1. Amini M., Ghoranneviss M. (2016). Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT. 73: 178-184. [DOI: 10.1016/j.lwt.2016.06.014]
2. Batista J.D.F., Dantas A.M., Dos Santos Fonseca J.V., Madruga M.S., Fernandes F.A.N., Rodrigues S., Da Silva Campelo Borges G. (2021). Effects of cold plasma on avocado pulp (Persea americana Mill.): chemical characteristics and bioactive compounds. Journal of Food Processing and Preservation. 45: e15179. [DOI: 10.1111/jfpp.15179]
3. Bey M.B., Louaileche H., Zemouri S. (2013). Optimization of phenolic compound recovery and antioxidant activity of light and dark dried fig (Ficus carica L.) varieties. Food Science and Biotechnology. 22: 1613-1619. [DOI: 10.1007/s10068-013-0258-7]
4. Chen Y., Zhang Y., Jiang L., Chen G., Yu J., Li S., Chen Y. (2020). Moisture molecule migration and quality changes of fresh wet noodles dehydrated by cold plasma treatment. Food Chemistry. 328: 127053. [DOI: 10.1016/j.foodchem.2020.127053]
5. Chutia H., Mahanta C.L. (2021). Influence of cold plasma voltage and time on quality attributes of tender coconut water (Cocos nucifera L.) and degradation kinetics of its blended beverage. Journal of Food Processing and Preservation. 45: e15372. [DOI: 10.1111/jfpp.15372]
6. Doymaz İ. (2004). Pretreatment effect on sun drying of mulberry fruits (Morus alba L.). Journal of Food Engineering. 65: 205-209. [DOI: 10.1016/j.jfoodeng.2004.01.016]
7. Gençdağ E., Görgüç A., Okuroğlu F., Yılmaz F.M. (2021). The effects of power ‐ ultrasound, peroxyacetic acid and sodium chloride washing treatments on the physical and chemical quality characteristics of dried figs. Journal of Food Processing and Preservation. 45: e15009. [DOI: 10.1111/jfpp.15009]
8. González-Curbelo M.Á., Kabak B. (2023). Occurrence of mycotoxins in dried fruits worldwide, with a focus on aflatoxins and ochratoxin A: a review. Toxins. 15: 576. [DOI: 10.3390/toxins15090576]
9. Heshmati A., Mozaffari Nejad A.S. (2015). Ochratoxin A in dried grapes in Hamadan province, Iran. Food Additives and Contaminants: Part B. 8: 255-259. [DOI: 10.1080/19393210.2015.1074945]
10. Heshmati A., Zohrevand T., Mousavi Khaneghah A., Mozaffari Nejad A.S., Sant’Ana A.S. (2017). Co-occurrence of aflatoxins and ochratoxin A in dried fruits in Iran: dietary exposure risk assessment. Food and Chemical Toxicology. 106: 202-208. [DOI: 10.1016/j.fct.2017.05.046]
11. Jangi F., Ebadi M.-T., Ayyari M. (2021). Qualitative changes in hyssop (Hyssopus officinalis L.) as affected by cold plasma, packaging method and storage duration. Journal of Applied Research on Medicinal and Aromatic Plants. 22: 100289. [DOI: 10.1016/j.jarmap.2020.100289]
12. Karaca H., Nas S. (2006). Aflatoxins, patulin and ergosterol contents of dried figs in Turkey. Food Additives and Contaminants. 23: 502-508. [DOI: 10.1080/02652030600550739]
13. Kashfi A.S., Ramezan Y., Khani M.R. (2020). Simultaneous study of the antioxidant activity, microbial decontamination and color of dried peppermint (Mentha piperita L.) using low pressure cold plasma. LWT. 123: 109121. [DOI: 10.1016/j.lwt.2020.109121]
14. Kaymak T., Türker L., Tulay H., Stroka J. (2018). Determination of aflatoxins and ochratoxin A in traditional Turkish concentrated fruit juice products by multi-immunoaffinity column cleanup and LC fluorescence detection: single-laboratory validation. Journal of AOAC International. 101: 1839-1849. [DOI: 10.5740/jaoacint.17-0463]
15. Luttfullah G., Hussain A. (2011). Studies on contamination level of aflatoxins in some dried fruits and nuts of Pakistan. Food Control. 22: 426-429. [DOI: 10.1016/j.foodcont.2010.09.015]
16. Nguyen T., Palmer J., Phan N., Shi H., Keener K., Flint S. (2022). Control of aflatoxin M1 in skim milk by high voltage atmospheric cold plasma. Food Chemistry: 386: 132814. [DOI: 10.1016/j.foodchem.2022.132814]
17. Nishimwe K., Agbemafle I., Reddy M.B., Keener K., Maier D.E. (2021). Cytotoxicity assessment of aflatoxin B1 after high voltage atmospheric cold plasma treatment. Toxicon. 194: 17-22. [DOI: 10.1016/j.toxicon.2021.02.008]
18. Oehmigen K., Hähnel M., Brandenburg R., Wilke C., Weltmann K.-D., Von Woedtke T. (2010). The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Processes and Polymers. 7: 250-257. [DOI: 10.1002/ppap.200900077]
19. Puligundla P., Lee T., Mok C. (2020). Effect of corona discharge plasma jet treatment on the degradation of aflatoxin B1 on glass slides and in spiked food commodities. LWT. 124: 108333. [DOI: 10.1016/j.lwt.2019.108333]
20. Rodríguez Ó., Gomes W.F., Rodrigues S., Fernandes F.A.N. (2017). Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L.). LWT. 84: 457-463. [DOI: 10.1016/j.lwt.2017.06.010]
21. Samokhvalova O., Kasabova K., Shmatchenko N., Zagorulko A., Zahorulko A. (2021). Improving the marmalade technology by adding a multicomponent fruit-and-berry paste. Eastern-European Journal of Enterprise Technologies. 6: 6-14. [DOI: 10.15587/1729-4061.2021.245986]
22. Sarangapani C., O'Toole G., Cullen P.J., Bourke P. (2017). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science and Emerging Technologies. 44: 235-241. [DOI: 10.1016/j.ifset.2017.02.012]
23. Shi H., Cooper B., Stroshine R.L., Ileleji K.E., Keener K.M. (2017a). Structures of degradation products and degradation pathways of aflatoxin B1 by high-voltage atmospheric cold plasma (HVACP) treatment. Journal of Agricultural and Food Chemistry. 65: 6222-6230. [DOI: 10.1021/acs.jafc.7b01604]
24. Shi H., Ileleji K., Stroshine R.L., Keener K., Jensen J.L. (2017b). Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food and Bioprocess Technology. 10: 1042-1052. [DOI: 10.1007/s11947-017-1873-8]
25. Shiekh K.A., Benjakul S. (2020). Effect of high voltage cold atmospheric plasma processing on the quality and shelf-life of Pacific white shrimp treated with Chamuang leaf extract. Innovative Food Science and Emerging Technologies. 64: 102435. [DOI: 10.1016/j.ifset.2020.102435]
26. Tappi S., Ramazzina I., Rizzi F., Sacchetti G., Ragni L., Rocculi P. (2018). Effect of plasma exposure time on the polyphenolic profile and antioxidant activity of fresh-cut apples. Applied Sciences. 8: 1939. [DOI: 10.3390/app8101939]
27. Ucar Y., Ceylan Z., Durmus M., Tomar O., Cetinkaya T. (2021). Application of cold plasma technology in the food industry and its combination with other emerging technologies. Trends in Food Science and Technology. 114: 355-371. [DOI: 10.1016/j.tifs.2021.06.004]
28. Viuda-Martos M., Barber X., Pérez-Álvarez J.A., Fernández-López J. (2015). Assessment of chemical, physico-chemical, techno-functional and antioxidant properties of fig (Ficus carica L.) powder co-products. Industrial Crops and Products. 69: 472-479. [DOI: 10.1016/j.indcrop.2015.03.005]
29. Wang Z., Li S., Ge S., Lin S. (2020). Review of distribution, extraction methods, and health benefits of bound phenolics in food plants. Journal of Agricultural and Food Chemistry. 68: 3330-3343. [DOI: 10.1021/acs.jafc.9b06574]
30. Ziuzina D., Misra N.N., Cullen P.J., Keener K., Mosnier J.P., Vilaró I., Gaston E., Bourke P. (2016). Demonstrating the potential of industrial scale in-package atmospheric cold plasma for decontamination of cherry tomatoes. Plasma Medicine. 6: 397-412. [DOI: 10.1615/PlasmaMed.2017019498]