Volume 12, Issue 1 (March 2025)                   J. Food Qual. Hazards Control 2025, 12(1): 73-80 | Back to browse issues page

Ethics code: Not applicable


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Parihar H, Singh U, Pathak R, Chaturvedi P, Dayal R, Tirumalai P. Investigating the Individual and Combined Effect of Essential Oils and Probiotics against Staphylococcus aureus. J. Food Qual. Hazards Control 2025; 12 (1) :73-80
URL: http://jfqhc.ssu.ac.ir/article-1-1260-en.html
Department of Botany (Agriculture Sciences), Dayalbagh Educational Institute, Uttar Pradesh, India, Food and Dairy Testing Laboratory, Department of Botany (Agriculture Sciences), Faculty of Science (Dairy Campus), Dayalbagh Educational Institute, Dayalbagh, Agra – 282005. Uttar Pradesh. India , premtsaran@dei.ac.in
Abstract:   (243 Views)
Background: The pathogenic bacteria present in food contribute to its spoilage and can lead to the development of diseases. Chemical preservatives exhibit toxicity and resistance problems, prompting the need for safer alternatives. Natural phytochemicals and probiotics are effective options, as essential oils and probiotics possess robust antibacterial characteristics. The objective of this study is to investigate the combined effects of probiotics (Lactobacillus plantarum, Lactobacillus casei, and Bifidobacterium bifidum) and essential oils derived from Murraya koenigii (curry patha) and Allium sativum (garlic) in inhibiting the growth of Staphylococcus aureus, a major foodborne pathogen.
Methods: The study assessed the antibacterial effects of M. koenigii and A. sativum essential oils on S. aureus, both alone and in combination with probiotics (L. plantarum, L. casei, and B. bifidum). Antibacterial activity was measured at zero, 24, and 48 h using a culture plate method with serial dilution and pour plate technique. The Bliss Independent model was used to analyze interactions between control and treatments. Synergy factor and relative inhibition were determined using Python software to evaluate the combined effects of essential oils and probiotics. All treatments were performed in duplicate.
Results: M. koenigii and A. sativum essential oils exhibit antibacterial activity against S. aureus, with M. koenigii demonstrating greater potency. Notably, their effectiveness in inhibiting bacterial cells is enhanced when combined with probiotics. In the control group, the colony forming unit/ml of S. aureus was 8.09±0.51, whereas in the presence of M. koenigii essential oil, it significantly reduced to 2±0.2.
Conclusion: While both essential oils and probiotics have antibacterial effects on their own, using them together may require careful attention to ensure effectiveness.

DOI: 10.18502/jfqhc.12.1.18368
Full-Text [PDF 770 kb]   (113 Downloads) |   |   Full-Text (HTML)  (60 Views)  
Type of Study: Original article | Subject: Special
Received: 24/09/07 | Accepted: 25/03/12 | Published: 25/03/30

References
1. Abebe E., Gugsa G., Ahmed, M. (2020). Review on major food-borne zoonotic bacterial pathogens. Journal of Tropical Medicine. 2020: 1-9. [DOI: 10.1155/2020/4674235] [DOI:10.1155/2020/4674235] [PMID] [PMCID]
2. Alengebawy A., Abdelkhalek S.T., Qureshi S.R., Wang M.Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics. 9: 42. [DOI: 10.3390/toxics9030042] [DOI:10.3390/toxics9030042] [PMID] [PMCID]
3. Amouei H., Ferronato G., Qotbi A.A.A., Bouyeh, M., Dunne P.G., Prandini A., Seidavi A. (2021). Effect of essential oil of thyme (Thymus vulgaris L.) or increasing levels of a commercial prebiotic (TechnoMOS®) on growth performance and carcass characteristics of male broilers. Animals. 11: 3330. [DOI: 10.3390/ani11113330] [DOI:10.3390/ani11113330] [PMID] [PMCID]
4. Booyens J., Thantsha M.S. (2013). Antibacterial effect of hydrosoluble extracts of garlic (Allium sativum) against Bifidobacterium spp. and Lactobacillus acidophilus. African Journal of Microbiology Research. 7: 669-677. [DOI: 10.5897/AJMR12.1616]
5. Darbandi A., Asadi A., Mahdizade Ari M., Ohadi E., Talebi M., Halaj Zadeh M., Darb Emamie A., Ghanavati R., Kakanj, M. (2022). Bacteriocins: properties and potential use as antimicrobials. Journal of Clinical Laboratory Analysis. 36: e24093. [DOI: 10.1002/jcla.24093] [DOI:10.1002/jcla.24093] [PMID] [PMCID]
6. Davies C.R., Wohlgemut F., Young T., Violet J., Dickinson M., Sanders J.W., Vallieres C., Avery S.V. (2021). Evolving challenges and strategies for fungal control in the food supply chain. Fungal Biology Reviews. 36:15-26. [DOI:10.1016/j.fbr.2021.01.003] [DOI:10.1016/j.fbr.2021.01.003] [PMID] [PMCID]
7. De Montijo-Prieto S., Razola-Díaz M.D.C., Barbieri F., Tabanelli G., Gardini F., Jiménez-Valera M., Ruiz-Bravo A., Verardo V., Gómez-Caravaca A.M. (2023). Impact of lactic acid bacteria fermentation on phenolic compounds and antioxidant activity of avocado leaf extracts. Antioxidants. 12: 298. [DOI: 10.3390/antiox12020298] [DOI:10.3390/antiox12020298] [PMID] [PMCID]
8. Kumar A., Joishy T., Das S., Kalita M.C., Mukherjee A.K., Khan M.R. (2022). A potential probiotic Lactobacillus plantarum JBC5 improves longevity and healthy aging by modulating antioxidative, innate immunity and serotonin-signaling pathways in Caenorhabditis elegans. Antioxidants. 11: 268. [DOI: 10.3390/antiox11020268] [DOI:10.3390/antiox11020268] [PMID] [PMCID]
9. Li C., Kong Q., Mou H., Jiang Y., Du Y., Zhang F. (2021). Biotransformation of alkylamides and alkaloids by lactic acid bacteria strains isolated from Zanthoxylum bungeanum meal. Bioresource Technology. 330: 124944. [DOI: 10.1016/j.biortech.2021.124944] [DOI:10.1016/j.biortech.2021.124944] [PMID]
10. Liu Q., Yin X., Languino L.R., Altieri D.C. (2018). Evaluation of drug combination effect using a bliss independence dose-response surface model. Statistics in Biopharmaceutical Research. 10: 112-122. [DOI: 10.1080/19466315.2018.1437071] [DOI:10.1080/19466315.2018.1437071] [PMID] [PMCID]
11. Monika K., Malik T., Gehlot R., Rekha K., Kumari A., Sindhu R., Rohilla P. (2021). Antimicrobial properties of probiotics. Environment Conservation Journal. 22: 33-48. [DOI: 10.36953/ECJ.2021.SE.2204] [DOI:10.36953/ECJ.2021.SE.2204]
12. Narayana D.B., Brindavanam N.B., Shirsekar S. (2024). History of safe use of herbs - approaches for documenting evidence. Journal of Ayurveda and Integrative Medicine. 15: 100849. [DOI: 10.1016/j.jaim.2023.100849] [DOI:10.1016/j.jaim.2023.100849] [PMID] [PMCID]
13. Pan I., Nanjundan K., Achuthan A., Issac P.K., Rajagopal R., Chang S.W., Bhat S.A., Ravindran B. (2023). Exploration of compost soil for the production of thermo-stable Bacillus protease to synthesize bioactive compounds through soy protein hydrolysis. Agronomy. 13: 1019. [DOI: 10.3390/agronomy13041019] [DOI:10.3390/agronomy13041019]
14. Parihar H., Pathak R., Tirumalai P.S. (2023). Individual and collective effect of lactic acid bacteria on Staphylococcus aureus. Journal of Bacteriology and Mycology. 11: 87-91. [DOI: 10.15406/jbmoa.2023.11.00350] [DOI:10.15406/jbmoa.2023.11.00350]
15. Patil R., Mandlik S., Mandlik D. (2024). Murraya koenigii (curry tree): a review of its phytochemistry, ethnomedicinal uses, and pharmacology with respect to molecular mechanisms. Current Traditional Medicine. 10: 73-97. [DOI: 10.2174/2215083810666230609163404] [DOI:10.2174/2215083810666230609163404]
16. Šalomskienė J., Abraitienė A., Jonkuviene D., Mačionienė I., Repečkienė J., Stankienė J., Vaičiulytė-Funk L. (2015). Changes in antagonistic activity of lactic acid bacteria induced by their response to technological factors. Agricultural and Food Science. 24: 289-299. [DOI: 10.23986/afsci.50936] [DOI:10.23986/afsci.50936]
17. Shahidi F., Hossain A. (2018). Bioactives in spices, and spice oleoresins: phytochemicals and their beneficial effects in food preservation and health promotion. Journal of Food Bioactives. 3: 8-75. [DOI: 10.31665/JFB.2018.3149] [DOI:10.31665/JFB.2018.3149]
18. Todd E. (2020). Food-borne disease prevention and risk assessment. International Journal of Environmental Research and Public Health. 17: 5129. [DOI: 10.3390/ijerph17145129] [DOI:10.3390/ijerph17145129] [PMID] [PMCID]
19. Zhao W., Sachsenmeier K., Zhang L., Sult E., Hollingsworth R.E., Yang H. (2014). A new bliss independence model to analyze drug combination data. Journal of Biomolecular Screening. 19:817-821. [DOI: 10.1177/1087057114521] [DOI:10.1177/1087057114521867] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb