Volume 12, Issue 1 (March 2025)                   J. Food Qual. Hazards Control 2025, 12(1): 46-60 | Back to browse issues page

Ethics code: Not applicable


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Belkhir S, Abdessemed D, Refas I. Impact of Drying Methods on Physicochemical Properties, Bioactive content, and Antioxidant Activity of Opuntia ficus-indica Fruits. J. Food Qual. Hazards Control 2025; 12 (1) :46-60
URL: http://jfqhc.ssu.ac.ir/article-1-1266-en.html
Laboratory for the improvement of agricultural production and protection of ecosystems in arid zones (LAPAPEZA), Institute of Veterinary and Agronomic Sciences, Batna 1 University, Algeria , safia.belkhir@univ-batna.dz
Abstract:   (214 Views)
Background: Opuntia ficus-indica (prickly pear), is a highly nutritious fruit known for its antioxidant and medicinal properties. However, its seasonal availability and high moisture content make it perishable, necessitating preservation methods like drying. This study aimed to assess the impact of conventional drying methods on the drying kinetics and quality characteristics of both pulp and peels of prickly pear fruit.
Methods: Fruits harvested in August and September 2022 were subjected two drying methods: Shade drying and Convective drying (CD) at 40 and 60 °C using a hot air oven. Physicochemical and bioactive properties were analyzed., including Total Phenolic Content (TPC) quantified via the Folin-Ciocalteu assay, and antioxidant activity measured using radical scavenging assay. Data were analyzed using XLSTAT (version 14.5.03). One-way Analysis of Variance (ANOVA) followed by Duncan test (p<0.05), and Pearson’s correlation and Principal Component Analysis for data visualization.
Results: Higher drying temperatures resulted in shorter drying times and lower moisture content. Drying also significantly increased the pH, while inducing changes in Total Soluble Solids and Titratable Acidity in both pulp and peels, along with a notable color change. Peels subjected to CD at 60 °C showed the highest Total Phenolic Content and Total Betalains content, at 35.54 mg Gallic Acid Equivalents (GAE)/g dry weight and 0.991 mg/g dry weight, respectively. Flavonoid and tannin content were highest in shade-dried pulp and at 40 °C, indicating the heat sensitivity of these compounds. Minor effects on antioxidant activity (IC50) were observed in pulp during drying, compared to the peels, where the lowest IC50 with values around 2.10 mg/ml, was recorded for convective dried peels at 60°C.
Conclusion: Convective drying at 60 °C proved to be the most effective methods for drying and preserving the bioactive properties of prickly pear fruit, offering a balance between drying efficiency and retention of key nutrients and antioxidants.

DOI: 10.18502/jfqhc.12.1.18366
Full-Text [PDF 1199 kb]   (132 Downloads) |   |   Full-Text (HTML)  (80 Views)  
Type of Study: Original article | Subject: Special
Received: 24/09/18 | Accepted: 25/03/25 | Published: 25/03/30

References
1. Abrol G.S., Vaidya D., Sharma A., Sharma S. (2014). Effect of solar drying on physico-chemical and antioxidant properties of mango, banana and papaya. National Academy Science Letters. 37: 51-57. [DOI: 10.1007/s40009-013-0196-1] [DOI:10.1007/s40009-013-0196-1]
2. Alkaltham M.S., Salamatullah A., Hayat K. (2020). Determination of coffee fruit antioxidants cultivated in Saudi Arabia under different drying conditions. Journal of Food Measurement and Characterization. 14: 1306-1313. [DOI: 10.1007/s11694-020-00378-4] [DOI:10.1007/s11694-020-00378-4]
3. Aral S., Beşe A.V. (2016). Convective drying of hawthorn fruit (Crataegus spp.): effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chemistry. 210: 577-584. [DOI: 10.1016/j.foodchem. 2016.04.128] [DOI:10.1016/j.foodchem.2016.04.128] [PMID]
4. Aruwa C.E., Amoo S.O., Kudanga T. (2018). Opuntia (Cactaceae) plant compounds, biological activities and prospects - a comprehensive review. Food Research International. 112: 328-344. [DOI: 10.1016/j.foodres.2018.06.047] [DOI:10.1016/j.foodres.2018.06.047] [PMID]
5. Association of Official Analytical Chemists (AOAC). (2000). Official methods of analysis, 17th Edition. Methods 925.10, 932.12, 942.15, 981.12. The Association of Official Analytical Chemists, Gaithersburg, MD, USA.
6. Barba F.J., Putnik P., Bursać Kovačević D., Poojary M.M., Roohinejad S., Lorenzo J.M., Koubaa M. (2017). Impact of conventional and non-conventional processing on prickly pear (Opuntia spp.) and their derived products: from preservation of beverages to valorization of by-products. Trends in Food Science and Technology. 67: 260-270. [DOI: 10.1016/j.tifs.2017.07.012] [DOI:10.1016/j.tifs.2017.07.012]
7. Bourhia M., Elmahdaoui H., Moussa S.I., Ullah R., Bari A. (2020). Potential natural dyes food from the powder of prickly pear fruit peels (Opuntia spp.) growing in the mediterranean basin under climate stress. BioMed Research International. 2020. [DOI: 10.1155/2020/7579430] [DOI:10.1155/2020/7579430] [PMID] [PMCID]
8. Brand-Williams W., Cuvelier M.E., Berset C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology. 28: 25-30. [DOI: 10.1016/S0023-6438(95)80008-5] [DOI:10.1016/S0023-6438(95)80008-5]
9. Capar T.D., Dedebas T., Kavuncuoglu H., Karatas S.M., Ekici L., Yalcin H. (2023). Phenolic components, mineral composition, physicochemical, and bioactive properties of Opuntia ficus-indica with different drying methods. Erwerbs-Obstbau. 65: 347-353. [DOI: 10.1007/s10341-022-00807-2] [DOI:10.1007/s10341-022-00807-2]
10. Cejudo-Bastante M.J., Chaalal M., Louaileche H., Parrado J., Heredia F.J. (2014). Betalain profile, phenolic content, and color characterization of different parts and varieties of opuntia ficus-indica. Journal of Agricultural and Food Chemistry. 62: 8491-8499. [DOI: 10.1021/jf502465g] [DOI:10.1021/jf502465g] [PMID]
11. El-Hawary S.S., Sobeh M., Badr W.K., Abdelfattah M.A.O., Ali Z.Y., El-Tantawy M.E., Rabeh M.A., Wink M. (2020). HPLC-PDA-MS/MS profiling of secondary metabolites from Opuntia ficus-indica cladode, peel and fruit pulp extracts and their antioxidant, neuroprotective effect in rats with aluminum chloride induced neurotoxicity. Saudi Journal of Biological Sciences. 27: 2829-2838. [DOI: 10.1016/j.sjbs.2020.07.003] [DOI:10.1016/j.sjbs.2020.07.003] [PMID] [PMCID]
12. El Mannoubi I. (2021). Effect of extraction solvent on phenolic composition, antioxidant and antibacterial activities of skin and pulp of Tunisian red and yellow-orange Opuntia ficus indica fruits. Journal of Food Measurement and Characterization. 15: 643-651. [DOI: 10.1007/s11694-020-00673-0] [DOI:10.1007/s11694-020-00673-0]
13. Ettalibi F., Elmahdaoui H., Amzil J., Gadhi C., Harrak H. (2020). Drying impact on physicochemical and biochemical criteria of prickly pear fruit peels of three varieties of Opuntia spp. Materials Today: Proceedings. 27: 3243-3248. [DOI: 10.1016/j.matpr.2020.04.726] [DOI:10.1016/j.matpr.2020.04.726]
14. Farahmandfar R., Tirgarian B., Dehghan B., Nemati A. (2020). Comparison of different drying methods on bitter orange (Citrus aurantium L.) peel waste: changes in physical (density and color) and essential oil (yield, composition, antioxidant and antibacterial) properties of powders. Journal of Food Measurement and Characterization. 14: 862-875. [DOI: 10.1007/s11694-019-00334-x] [DOI:10.1007/s11694-019-00334-x]
15. Gallegos-Infante J.A., Rocha-Guzman N.E., González-Laredo R.F., Reynoso-Camacho R., Medina-Torres L., Cervantes-Cardozo V. (2009). Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica). International Journal of Food Sciences and Nutrition. 60: 80-87. [DOI: 10.1080/09637480802477691] [DOI:10.1080/09637480802477691] [PMID]
16. García-Cayuela T., Gómez-Maqueo A., Guajardo-Flores D., Welti-Chanes J., Cano M.P. (2019). Characterization and quantification of individual betalain and phenolic compounds in Mexican and Spanish prickly pear (Opuntia ficus-indica L. Mill) tissues: a comparative study. Journal of Food Composition and Analysis. 76: 1-13. [DOI: 10.1016/j.jfca.2018.11.002] [DOI:10.1016/j.jfca.2018.11.002]
17. Guclu G., Polat S., Kelebek H., Capanoglu E., Selli S. (2022). Elucidation of the impact of four different drying methods on the phenolics, volatiles, and color properties of the peels of four types of citrus fruits. Journal of the Science of Food and Agriculture. 102: 6036-6046. [DOI: 10.1002/jsfa.11956] [DOI:10.1002/jsfa.11956] [PMID]
18. Guine R.P.F., Correia P.M.R., Correia A.C., Goncalves F., Brito M.F.S., Ribeiro J.R.P. (2018). Effect of drying temperature on the physical-chemical and sensorial properties of eggplant (Solanum melongena L.). Current Nutrition and Food Science. 14: 28-39. [DOI: 10.2174/1573401313666170316113359] [DOI:10.2174/1573401313666170316113359]
19. Hernández García F., Andreu Coll L., Cano-Lamadrid M., López Lluch D., A. Carbonell Barrachina Á., Legua Murcia P. (2020). Valorization of prickly pear [Opuntia ficus-indica (L.) mill]: nutritional composition, functional properties and economic aspects. In: El-Shafie H. (Editors). Invasive species-introduction pathways, economic impact, and possible management options. IntechOpen, London, UK. pp: 127-142. [DOI: 10.5772/intechopen.92009] [DOI:10.5772/intechopen.92009]
20. Hossain M.B., Barry-ryan C., Martin-diana A.B., Brunton N.P. (2010). Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chemistry. 123: 85-91. [DOI: 10.1016/j.foodchem.2010.04.003] [DOI:10.1016/j.foodchem.2010.04.003]
21. Kaur R., Kaur K., Ahluwalia P. (2020). Effect of drying temperatures and storage on chemical and bioactive attributes of dried tomato and sweet pepper. LWT. 117: 108604. [DOI: 10.1016/j.lwt.2019.108604] [DOI:10.1016/j.lwt.2019.108604]
22. Meng Q., Fan H., Li Y., Zhang L. (2018). Effect of drying methods on physico-chemical properties and antioxidant activity of Dendrobium officinale. Journal of Food Measurement and Characterization. 12: 1-10. [DOI: 10.1007/s11694-017-9611-5] [DOI:10.1007/s11694-017-9611-5]
23. Mohammed S., Edna M., Siraj K. (2020). The effect of traditional and improved solar drying methods on the sensory quality and nutritional composition of fruits: a case of mangoes and pineapples. Heliyon. 6: e04163. [DOI: 10.1016/j.heliyon.2020.e04163] [DOI:10.1016/j.heliyon.2020.e04163] [PMID] [PMCID]
24. Nadia C., Hayette L., Safia M., Yasmina M., Yasmina H., Abderezak T. (2013). Physico-chemical characterisation and antioxidant activity of some Opuntia ficus-indica varieties grown in North Algeria. African Journal of Biotechnology. 12: 299-307. [DOI: 10.5897/ajb12.1946] [DOI:10.5897/AJB12.1946]
25. Najman K., Adrian S., Sadowska A., Świąder K., Hallmann E., Buczak K., Waszkiewicz-Robak B., Szterk A. (2023). Changes in physicochemical and bioactive properties of quince (Cydonia oblonga mill.) and its products. Molecules. 28: 3066. [DOI: 10.3390/molecules28073066] [DOI:10.3390/molecules28073066] [PMID] [PMCID]
26. Nicoli M.C., Anese M., Parpinel M. (1999). Influence of processing on the antioxidant properties of fruit and vegetables. Trends in Food Science and Technology. 10: 94-100. [DOI: 10.1016/S0924-2244(99)00023-0] [DOI:10.1016/S0924-2244(99)00023-0]
27. Onwude D.I., Hashim N., Janius R.B., Nawi N.M., Abdan K. (2016). Modeling the thin-layer drying of fruits and vegetables: a review. Comprehensive Reviews in Food Science and Food Safety. 15: 599-618. [DOI: 10.1111/1541-4337.12196] [DOI:10.1111/1541-4337.12196] [PMID]
28. Pathare P.B., Opara U.L., Al-Said F.A.J. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology. 6: 36-60. [DOI: 10.1007/s11947-012-0867-9] [DOI:10.1007/s11947-012-0867-9]
29. Phuon V., Ramos I.N., Brandão T.R.S., Silva C.L.M. (2022). Assessment of the impact of drying processes on orange peel quality characteristics. Journal of Food Process Engineering. 45: e13794. [DOI: 10.1111/jfpe.13794] [DOI:10.1111/jfpe.13794]
30. Pinheiro M.N.C., Castro L.M.M.N. (2023). Effective moisture diffusivity prediction in two Portuguese fruit cultivars (Bravo de Esmolfe apple and Madeira banana) using drying kinetics data. Heliyon. 9: e17741. [DOI: 10.1016/j.heliyon.2023.e17741] [DOI:10.1016/j.heliyon.2023.e17741] [PMID] [PMCID]
31. Price M.L., Scoyoc S.V., Butler L.G. (1978). A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. Journal of Agricultural and Food Chemistry. 26: 1214-1218. [DOI: 10.1021/jf60219a031] [DOI:10.1021/jf60219a031]
32. Refas I., Amiali M., George O.A., Le K.H., Malekjani N., Kharaghani A. (2025). Bioactive composition, microstructure, and physicochemical properties of Arbutus unedo berries dried using different techniques. Journal of Stored Products Research. 111: 102501. [DOI: 10.1016/j.jspr.2024.102501] [DOI:10.1016/j.jspr.2024.102501]
33. Sadin R., Chegini G.-R., Sadin H. (2014). The effect of temperature and slice thickness on drying kinetics tomato in the infrared dryer. Heat and Mass Transfer. 50: 501-507. [DOI: 10.1007/s00231-013-1255-3] [DOI:10.1007/s00231-013-1255-3]
34. Shi L., Gu Y., Wu D., Wu X., Grierson D., Tu Y., Wu, Y. (2019). Hot air drying of tea flowers: effect of experimental temperatures on drying kinetics, bioactive compounds and quality attributes. International Journal of Food Science and Technology. 54: 526-535. [DOI: 10.1111/ijfs.13967] [DOI:10.1111/ijfs.13967]
35. Singleton V.L., Rossi J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 16: 144-158. [DOI: 10.5344/ajev.1965.16.3.144] [DOI:10.5344/ajev.1965.16.3.144]
36. Sultana B., Anwar F., Ashraf M., Saari N. (2012). Effect of drying techniques on the total phenolic contents and antioxidant activity of selected fruits. Journal of Medicinal Plants Research. 6: 161-167. [DOI: 10.5897/jmpr11.916] [DOI:10.5897/JMPR11.916]
37. Touil A., Chemkhi S., Zagrouba F. (2014). Moisture diffusivity and shrinkage of fruit and cladode of Opuntia ficus-indica during infrared drying. Journal of Food Processing. 2014: 175402. [DOI: 10.1155/2014/175402] [DOI:10.1155/2014/175402]
38. Vega-Gálvez A., Di Scala K., Rodríguez K., Lemus-Mondaca R., Miranda M., López J., Perez-Won M. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry. 117: 647-653. [DOI: 10.1016/j.foodchem.2009.04.066] [DOI:10.1016/j.foodchem.2009.04.066]
39. Yap J.Y., Hii C.L., Ong S.P., Lim K.H., Abas F., Pin K.Y. (2020). Effects of drying on total polyphenols content and antioxidant properties of Carica papaya leaves. Journal of the Science of Food and Agriculture. 100: 2932-2937. [DOI: 10.1002/jsfa.10320] [DOI:10.1002/jsfa.10320] [PMID]
40. Zhishen J., Mengcheng T., Jianming W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry. 64: 555-559. [DOI: 10.1016/S0308-8146(98)00102-2] [DOI:10.1016/S0308-8146(98)00102-2]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb