1. Adebo J.A., Njobeh P.B., Gbashi S., Oyedeji A.B., Ogundele O.M., Oyeyinka S.A., Adebo O.A. (2022). Fermentation of cereals and legumes: impact on nutritional constituents and nutrient bioavailability. Fermentation. 63: 1-57. [DOI: 10.3390/ fermentation8020063] [
DOI:10.3390/fermentation8020063]
2. Adegunloye D.V., Oparinde T.C. (2017). Effects of fermentation on the proximate composition of Irish (Solanum tuberosum) and sweet potato (Ipomoea batatas) peels. Advances in Microbiology. 7: 565-574. [DOI: 10.4236/aim.2017.77044] [
DOI:10.4236/aim.2017.77044]
3. Adelekan A.O., Alamu O.E., Daramola B.E. (2021). Effect of enrichment with turmeric and ginger on some quality characteristics of fermented maize ogi. Croatian Journal of Food Science and Technology. 13: 210-220. [DOI: 10.17508/ CJFST.2021.13.2.11] [
DOI:10.17508/CJFST.2021.13.2.11]
4. Anaemene D.I., Fadupin G.T. (2020). Effect of fermentation, germination, and combined germination-fermentation processing methods on the nutrient and anti-nutrient contents of quality protein maize (QPM) seeds. Journal of Applied Sciences and Environmental Management. 24: 1625-1630. [DOI: 10.4314/jasem.v24i9.21] [
DOI:10.4314/jasem.v24i9.21]
5. Association of Official Analytical Chemists (AOAC). (2012). Official methods of analysis, 22nd edition. URL: https://www.aoac.org/ official-methods-of-analysis/. Accessed 16 Novemebr 2023.
6. Banik A., Ghosh K., Pal S., Halder S.K., Ghosh C. Mondal K.C. (2020). Biofortification of multi-grain substrates by probiotic yeast. Food Biotechnology. 34: 283-305. [DOI: 10.1080/08905436.2020.1833913] [
DOI:10.1080/08905436.2020.1833913]
7. Banwo K., Asogwa F.C., Ogunremi O.R., Adesulu-Dahunsi A., Sanni A. (2021). Nutritional profile and antioxidant capacities of fermented millet and sorghum gruels using lactic acid bacteria and yeasts. Food Biotechnology. 35: 199-220. [DOI: 10.1080/ 08905436.2021.1940197] [
DOI:10.1080/08905436.2021.1940197]
8. Banwo K., Oyeyipo A., Mishra L., Sarkar D., Shetty K. (2022). Improving phenolic-linked functional qualities of traditional cereal-based fermented food (ogi) of Nigeria using compatible food synergies with underutilized edible plants. NFS Journal. 27: 1-12. [DOI: 10.1016/j.nfs.2022.03.001] [
DOI:10.1016/j.nfs.2022.03.001]
9. Fadahunsi I.F., Akoja A.D., Ozabor T.P. (2020). Characterization of indigenous yeast species isolated from fruits for pineapple wine production. Carpathian Journal of Food Science and Technology. 12: 109-121. [DOI: 10.34302/crpjfst/2020.12.5.8] [
DOI:10.34302/crpjfst/2020.12.5.8]
10. Fadahunsi I.F., Olubodun S. (2021). Antagonistic pattern of yeasts species against some selected food-borne pathogens. Bulletin of the National Research Centre. 45: 34. [DOI: 10.1186/s42269-020-00482-x] [
DOI:10.1186/s42269-020-00482-x]
11. Food and Agriculture Organization of the United Nations (FAO). (2017). FAOSTA database. URL: https://faostat.fao.org/site/567/ default.aspx#ancor/. Accessed 16th November, 2023.
12. Gabaza M., Joossens M., Cnockart M., Muchuweti M., Raes K., Vandamme P. (2019). Lactococci dominate the bacterial communities of fermented maize, sorghum and millet slurries in Zimbabwe. International Journal of Food Microbiology. 289: 77-87. [DOI: 10.1016/j.ijfoodmicro.2018.09.001] [
DOI:10.1016/j.ijfoodmicro.2018.09.001] [
PMID]
13. Gabaza M., Muchuweti M., Vandamme P., Raes K. (2017) Can fermentation be used as a sustainable strategy to reduce iron and zinc binders in traditional African fermented cereal porridges or gruels? Food Reviews International. 33: 561-586. [DOI: 10.1080/87559129.2016.1196491] [
DOI:10.1080/87559129.2016.1196491]
14. Hassan Z.M., Sebola N.A., Mabelebele M. (2021). The nutritional uses of millet grain for food and feed: a review. Agriculture and Food Security. 10: 282-296. [DOI: 10.1186/s40066-020-00282-6] [
DOI:10.1186/s40066-020-00282-6] [
PMID] [
PMCID]
15. Hejazi S.N., Orsat V. (2016). Malting process optimization for protein digestibility enhancement in finger millet grain. Journal of Food Science and Technology. 53: 1929-1938. [DOI: 10.1007/s13197-016-2188-x] [
DOI:10.1007/s13197-016-2188-x] [
PMID] [
PMCID]
16. Houngbedji M., Johansen P., Podonou S.W., Akissoe N., Arneborg N., Nielsen D.S., Hounhouigan D.J., Jesperen L. (2018). Occurrence of lactic acid bacteria and yeasts at species and strains level during spontaneous fermentation of mawe, a cereal dough produced in West Africa. Food Microbiology. 76: 267-278. [DOI: 10.1016/j.fm.2018.06.005] [
DOI:10.1016/j.fm.2018.06.005] [
PMID]
17. Hussain S., Mohammed A.A., Alamri M.S., Ibraheem M.A., Qasem A.A.A., El-Din M.F.S., Almaiman S.A.M. (2019). Wheat-millet flour cookies: physical, textural, sensory attributes and antioxidant potential. Food Science and Technology International. 26: 311-320. [DOI: 10.1177/1082013219894127] [
DOI:10.1177/1082013219894127] [
PMID]
18. Ijarotimi O.S., Oluwajuyitan T.D., Olugbuyi A.O., Makanjuola S.B. (2022). Comparative study on nutrient composition, functional property, and glycaemic index of "ogi" in healthy rats prepared from selected cereal grains. Journal of Future Foods. 2: 380-387. [DOI: 10.1016/j.jfutfo.2022.08.010] [
DOI:10.1016/j.jfutfo.2022.08.010]
19. Itaman V.O., Nwachukwu E. (2021). Bacteriological and nutritional assessment of fermented maize (ogi) fortified with ugba (Pentaclethra macrophylla). Nigerian Journal of Microbiology. 35: 5906-5917.
20. Khoddami A., Messina V., Venkata K.V., Farahnaky A., Blanchard C.L., Roberts T.H. (2023). Sorghum in foods: functionality and potentials in innovative products. Critical Reviews in Food Science and Nutrition. 63: 1170-1186. [DOI: 10.1080/10408398. 2021.1960793] [
DOI:10.1080/10408398.2021.1960793] [
PMID]
21. Koehler P., Wieser H. (2013). Chemistry of cereal grains. In: Gobetti M., Gaenzle M. (Editors) Handbook on sourdough biotechnology. Springer, New York. pp: 11-45. [DOI: 10.1007/978-1-4614-5425-0_2] [
DOI:10.1007/978-1-4614-5425-0_2]
22. Lee N.Y., Kang C.S. (2018). Quality improvement and antioxidant activity of sugar-snap cookies prepared using blends of cereal flour. Preventive Nutrition and Food Science. 23: 160-165. [DOI: 10.3746/pnf.2018.23.2.160] [
DOI:10.3746/pnf.2018.23.2.160] [
PMID] [
PMCID]
23. Li S., Zhao Y., Zhang L., Zhang X., Huang L., Li D., Niu C., Yang Z., Wang Q. (2012). Antioxidant activity of Lactobacillus Plantarum strains isolated from traditional Chinese fermented foods. Food Chemistry. 135: 1914-1919. [DOI: 10.1016/j.foodchem.2012. 06.048] [
DOI:10.1016/j.foodchem.2012.06.048] [
PMID]
24. Liu Z., Cai S., Zhang S., Xiao Y., Devahastin S., Guo C., Wang Y., Wang T., Yi J. (2023). A systematic review on fermented chili pepper products: sensorial quality, health benefits, fermentation microbiomes, and metabolic pathways. Trends in Food Science and Technology. 141: 104189. [DOI: 10.1016/j.tifs.2023.104189] [
DOI:10.1016/j.tifs.2023.104189]
25. Los A., Ziuzina D., Bourke P. (2018). Current and future technologies for microbiological decontamination of cereal grains. Journal of Food Science. 83: 1484-1493. [DOI: 10.1111/1750-3841.14181] [
DOI:10.1111/1750-3841.14181] [
PMID]
26. Marcel M.R., Chacha J.S., Ofoedu C.E. (2022). Nutritional evaluation of complementary porridge formulated from orange-fleshed sweet potato, amaranth grain, pumpkin seed, and soybean flours. Food Science and Nutrition. 10: 536-553. [DOI: 10.1002/fsn3.2675] [
DOI:10.1002/fsn3.2675] [
PMID] [
PMCID]
27. Minnaar P.P., Du Plessis H.W., Paulsen V., Ntushelo N., Jolly N.P., Du Toit M. (2017). Saccharomyces cerevisiae, non-saccharomyces yeasts and lactic acid bacteria in sequential fermentations: effect on phenolics and sensory attributes of South African Syrah wines. South African Journal of Enology and Viticulture. 38: 237-244. [DOI: 10.21548/38-2-1621] [
DOI:10.21548/38-2-1621]
28. Mohammed S.S.D., Orukotan A.A., Musa J. (2017). Effect of fermentation and malting on some cereal weaning foods enriched with African locust beans. Journal of Applied Sciences and Environmental Management. 21: 911-921. [DOI: 10.4314/jasem.v21i5.17] [
DOI:10.4314/jasem.v21i5.17]
29. Nkhata S.G., Ayua E., Kamau E.H., Shingiro J.B. (2018). Fermentation and germination improve the nutritional value of cereals and legumes through the activation of endogenous enzymes. Food Science and Nutrition. 6: 2446-2458. [DOI: 10.1002/fsn3.846] [
DOI:10.1002/fsn3.846] [
PMID] [
PMCID]
30. Noah A.A., Alagamba E.A. (2020). Microbial, proximate, and sensory quality of pito beverage locally prepared and hawked in Ogun State, Nigeria. European Journal of Biotechnology and Biosciences. 8: 35-39.
31. Ogodo A.C., Ugbogu O.C., Onyeagba R.A., Okereke H.C. (2017). Effect of lactic acid bacteria consortium fermentation on the proximate composition and in-vitro starch/protein digestibility of maize (Zea mays) flour. American Journal of Microbiology and Biotechnology. 4: 35-43.
32. Ojokoh A.O., Alade R.A., Ozabor P.T., Fadahunsi I.F. (2020). Effect of fermentation on sorghum and cowpea flour blends. Journal of Agricultural Biotechnology and Sustainable Development. 12: 39-49. [DOI: 10.5897/JABSD2019.0365]
33. Okafor U.I., Omemu A.M., Obadina A.O., Bankole M.O., Adeyeye S.A.O. (2018). Nutritional composition and antinutritional properties of maize ogi co-fermented with pigeon pea. Food Science and Nutrition. 6: 424-439. [DOI: 10.1002/fsn3.571] [
DOI:10.1002/fsn3.571] [
PMID] [
PMCID]
34. Olaniran A.F., Abiose S.H. (2019a). Nutritional evaluation of enhanced unsieved ogi paste with garlic and ginger. Preventive Nutrition and Food Science. 24: 348-356. [DOI: 10.3746/pnf.2019.24.3.348] [
DOI:10.3746/pnf.2019.24.3.348] [
PMID] [
PMCID]
35. Olaniran A.F., Abiose S.H. (2019b). Proximate and antioxidant activities of biopreserved ogi flour with garlic and ginger. F1000 Research. 7: 1936. [DOI: 10.12688/f1000research.17059.2] [
DOI:10.12688/f1000research.17059.2] [
PMID] [
PMCID]
36. Olawale K.M., Ojokoh A.O. (2019). Effects of fermentation and extrusion on the proximate compositions and organoleptic properties of sweet potato (Ipomoea batatas) and beniseed (Sesamum indicum) blends. South Asian Journal of Research in Microbiology. 5: 1-12. [DOI: 10.9734/sajrm/2019/v5i430137] [
DOI:10.9734/sajrm/2019/v5i430137]
37. Olojede A.O., Sanni A.I., Banwo K. (2020). Effect of legume addition on the physicochemical and sensorial attributes of sorghum-based sourdough bread. LWT-Food Science and Technology. 118: 108769. [DOI: 10.1016/j.lwt.2019.108769] [
DOI:10.1016/j.lwt.2019.108769]
38. Omemu A.M., Oyewole O.B., Bankole M.O. (2007). Significance of yeasts in the fermentation of maize for ogi production. Food Microbiology. 24: 571-576. [DOI: 10.1016/j.fm.2007.01.006] [
DOI:10.1016/j.fm.2007.01.006] [
PMID]
39. Onipede G.O., Odah B.C., Kolapo A.L., Ajayi A.A., Fawole A.O. (2021). Technological properties of lactic acid bacteria and yeasts isolated from ogi, a West African fermented cereal gruel. International Journal of Food Science and Nutrition. 6: 43-50.
40. Ozabor T., Damilola A., Iyabobola F., Abideen W., Anthony O. (2022). Effect of fermentation on the physicochemical and microbiological characteristics of sweet potato (Ipomoea batatas) and sprouted soybean (Glycine max) flour blends. Nigerian Food Journal. 40: 31-43. [DOI: 10.4313/nifoj.v40i2.3]
41. Paul A.K., Lim C.L., Apu M.A.I., Dolma K.G., Gupta M., De Lourdes Pereira M., Wilairatana P., Rahmatullah M., Wiart C., Nissapatorn V. (2023). Are fermented foods effective against inflammatory diseases?. International Journal of Environmental Research and Public Health. 20: 2481. [DOI: 10.3390/ijerph20032481] [
DOI:10.3390/ijerph20032481] [
PMID] [
PMCID]
42. Ramashia S.E., Gwata E.T., Meddows-Taylor S., Anyasi T.A., Jideani A.I.O. (2018). Some physical and functional properties of finger millet (Eleusine coracana) obtained in sub-Saharan Africa. Food Research International. 104: 110-118. [DOI: 10.1016./j. foodres.2017.09.065] [
DOI:10.1016/j.foodres.2017.09.065] [
PMID]
43. Shah A., Masoodi F.A., Gani A., Ashwar B.A. (2016). Newly released oat varieties of Himalayan region-techno-functional, rheological, and nutraceutical properties of flour. LWT-Food Science and Technology. 70: 111-118. [DOI: 10.1016/j.lwt.2016.02.033] [
DOI:10.1016/j.lwt.2016.02.033]
44. Terefe Z.K., Omwamba M.N., Nduko J.M. (2021). Effect of solid-state fermentation on proximate composition, antinutritional factors and invitro protein digestibility of maize flour. Food Science and Nutrition. 9: 6343-6352. [DOI: 10.1002/fsn3.2599] [
DOI:10.1002/fsn3.2599] [
PMID] [
PMCID]
45. Turker M. (2014). Yeast biotechnology: diversity and applications. In Proceedings of 27th VH Yeast Conference. 1-26.
46. Wei G., Zhao Q., Wang D., Fan Y., Shi Y., Huang A. (2022). Novel ACE inhibitory, antioxidant and alpha-glucosidase inhibitory peptides identified from fermented rubing cheese through peptidomic and molecular docking. LWT-Food Science and Technology. 159: 113196. [DOI: 10.1016/j.lwt.2022.113196] [
DOI:10.1016/j.lwt.2022.113196]
47. Yang Q., Yao H., Liu S., Mao J. (2022). Interaction and application of molds and yeasts in Chinese fermented foods. Frontiers in Microbiology. 12: 1-12. [DOI: 10.3389/fmicb.2021.664850] [
DOI:10.3389/fmicb.2021.664850] [
PMID] [
PMCID]
48. Yepez A., Russo P., Spano G., Khomenko I., Biasioli F., Capozzi V., Aznar R. (2019). In situ riboflavin fortification of different kefir-like cereal-based beverages using selected Andean LAB strains. Food Microbiology. 77: 61-68. [DOI: 10.1016/j.fm.2018.08.008] [
DOI:10.1016/j.fm.2018.08.008] [
PMID]
49. Zhu Y., Chu J., Lu Z., Lv F., Bie X., Zhang C., Zhao H. (2018). Physicochemical and functional properties of dietary fiber from foxtail millets (Setaria italic) bran. Journal of Cereal Science. 79: 456-461. [DOI: 10.1016/j.jcs.2017.12.011] [
DOI:10.1016/j.jcs.2017.12.011]