1. Agustina R., Fadhil R., Mustaqimah. (2021). Organoleptic test using the hedonic and descriptive methods to determine the quality of Pliek U. IOP Conf. Series: Earth and Environmental Science. 644: 012006 [DOI: 10.1088/1755-1315/644/1/012006]
2. Al-Shuhaib M.B.S., Hashim H.O. (2023). Mastering DNA chromatogram analysis in Sanger sequencing for reliable clinical analysis. Journal of Genetic Engineering and Biotechnology. 21: 115. [DOI: 10.1186/s43141-023-00587-6]
3. Ardiansyah, Nada A., Rahmawati N.T.I., Oktriani A., David W., Astuti R.M.A., Handoko D.D., Kusbiantoro B., Budijanto S., Shirakawa H. (2021). Volatile compounds, sensory profile and phenolic compounds in fermented rice bran. Plants. 10: 1073. [DOI: 10.3390/plants10061073]
4. Astuti R.D., Fibri D.L.N., Handoko D.D., David W., Budijanto S., Shirakawa H., Ardiansyah. (2022). The volatile compounds and aroma description in various Rhizopus oligosporus solid-state fermented and nonfermented rice bran. Fermentation. 8: 120. [DOI: 10.3390/fermentation8030120]
5. Ben-Amar A., Oueslati S., Mliki A. (2017). Universal direct PCR amplification system: a time- and cost-effective tool for high-throughput applications. 3 Biotech. 7: 246. [DOI: 10.1007/s13205-017-0890-7]
6. Boltar I., Čanžek Majhenič A., Jarni K., Jug T., Bavcon Kralj M. (2015). Volatile compounds in Nanos cheese: their formation during ripening and sesonal variation. Journal of Food Science and Technology. 52: 608-623. [DOI: 10.1007/s13197-014-1565-6]
7. Cabello-Olmo M., Krishnan P.G., Araña M., Oneca M., Díaz J.V., Barajas M., Rovai M. (2023). Development, analysis, and sensory evaluation of improved bread fortified with a plant-based fermented food product. Foods. 12: 2817. [DOI: 10.3390/ foods12152817]
8. Companioni-Damas E.Y., Santos F.J., Galceran M.T. (2012). Analysis of linear and cyclic methylsiloxanes in water by headspace-solid phase microextraction and gas chromatography-mass spectrometry. Talanta. 89: 63-69. [DOI: 10.1016/j.talanta. 2011.11.058]
9. Davidson R., Martín Del Campo A. (2020). Combinatorial and computational investigations of neighbor-joining bias. Frontiers in Genetics. 11: 584785. [DOI: 10.3389/fgene.2020.584785]
10. De Luca L., Aiello A., Pizzolongo F., Blaiotta G., Aponte M., Romano R. (2021). Volatile organic compounds in breads prepared with different sourdoughs. Applied Sciences. 11: 1330. [DOI: 10.3390/app11031330]
11. Dong X., Hu X., Sun L., Zhang H., Wu L., Wang B. (2018). Volatile compounds of wheat flour and steamed bread as affected by wheat storage time. SM Analytical and Bioanalytical Techniques. 3: 1015. [DOI: 10.36876/smabt.1015]
12. Fajarningsih N.D. (2016). Internal transcribed spacer (ITS) as Dna barcoding to identify fungal species: a review. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology. 11: 37. [DOI: 10.15578/squalen.v11i2.213]
13. Feng B., Lin Y., Zhou L., Guo Y., Friedman R., Xia R., Hu F., Liu C., Tang J. (2017). Reconstructing yeasts phylogenies and ancestors from whole genome data. Scientific Reports. 7: 15209. [DOI: 10.1038/s41598-017-15484-5]
14. Gallone B., Steensels J., Prahl T., Soriaga L., Saels V., Herrera-Malaver B., Merlevede A., Roncoroni M., Voordeckers K., Miraglia L., Teiling C., Steffy B., et al. (2016). Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell. 166: 1397-1410. [DOI: 10.1016/j.cell.2016.08.020]
15. Genç T.T., Günay M. (2020). Internal transcribed spacer (ITS) sequence-based identification of yeast biota on pomegranate surface and determination of extracellular enzyme profile. Nusantara Bioscience. 12: 59-67. [DOI: 10.13057/ nusbiosci/ n120111]
16. Hazelwood L.A., Daran J.-M., Van Maris A.J.A., Pronk J.T., Dickinson J.R. (2008). The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Applied and Environmental Microbiology. 74: 2259-2266. [DOI: 10.1128/AEM.02625-07]
17. Hesham A.E.-L., Wambui V., Henry Ogola J.O., Maina J.M. (2014). Phylogenetic analysis of isolated biofuel yeasts based on 5.8S-ITS rDNA and D1/D2 26S rDNA sequences. Journal of Genetic Engineering and Biotechnology. 12: 37-43. [DOI: 10.1016/ j.jgeb.2014.01.001]
18. Huynh B.-T., Passet V., Rakotondrasoa A., Diallo T., Kerleguer A., Hennart M., De Lauzanne A., Herindrainy P., Seck A., Bercion R., Borand L., De La Gandara M.P., et al. (2020): Klebsiella pneumoniae carriage in low-income countries: antimicrobial resistance, genomic diversity and risk factors. 11: 1287-1299. Gut Microbes. [DOI: 10.1080/19490976.2020.1748257]
19. Iranmanesh M., Ezzatpanah H., Akbari-Adergani B., Karimi Torshizi M.A. (2018). SPME/GC-MS characterization of volatile compounds of Iranian traditional dried Kashk. International Journal of Food Properties. 21: 1067-1079. [DOI: 10.1080/10942912.2018.1466323]
20. Izzreen M.N.N.Q., Hansen S.S., Petersen M.A. (2016). Volatile compounds in whole meal bread crust: the effects of yeast level and fermentation temperature. Food Chemistry. 210: 566-576. [DOI: 10.1016/j.foodchem.2016.04.110]
21. Jackson R.S. (2008). Wine science: principles and applications. 3rd Edition. Academic Press, London.
22. Karimi L., Mirhendi H., Khodadadi H., Mohammadi R. (2015). Molecular identification of uncommon clinical yeast species in Iran. Current Medical Mycology. 1: 1-6. [DOI: 10.18869/ acadpub.cmm.1.2.1]
23. Karki T.B., Timilsina P.M., Yadav A., Pandey G.R., Joshi Y., Bhujel S., Adhikari R., Neupane K. (2017). Selection and characterization of potential baker's yeast from indigenous resources of Nepal. Biotechnology Research International. 2017. [DOI: 10.1155/2017/1925820]
24. Katsura Y., Stanley Jr C.E., Kumar S., Nei M. (2017). The reliability and stability of an inferred phylogenetic tree from empirical data. Molecular Biology and Evolution. 34: 718-723. [DOI: 10.1093/molbev/msw272]
25. Longin F., Beck H., Gütler H., Heilig W., Kleinert M., Rapp M., Philipp N., Erban A., Brilhaus D., Mettler-Altmann T., Stich B. (2020). Aroma and quality of breads baked from old and modern wheat varieties and their prediction from genomic and flour-based metabolite profiles. Food Research International. 129: 108748. [DOI: 10.1016/j.foodres.2019.108748].
26. Makhoul S., Romano A., Capozzi V., Spano G., Aprea E., Cappellin L., Benozzi E., Scampicchio M., Märk T.D., Gasperi F., El-Nakat H., Guzzo J., et al. (2015). Volatile compound production during the bread-making process: effect of flour, yeast and their interaction. Food and Bioprocess Technology. 8: 1925-1937. [DOI: 10.1007/s11947-015-1549-1]
27. Martínez-Avila O., Sánchez A., Font X., Barrena R. (2018). Bioprocesses for 2-phenylethanol and 2-phenylethyl acetate production: current state and perspectives. Applied Microbiology and Biotechnology. 102: 9991-10004. [DOI: 10.1007/s00253-018-9384-8]
28. Mazumdar P., Pratama H., Lau S.E., Teo C.H., Harikrishna J.A. (2019). Biology, phytochemical profile and prospects for snake fruit: an antioxidant-rich fruit of South East Asia. Trends in Food Science and Technology. 91: 147-158. [DOI: 10.1016/j.tifs. 2019.06.017]
29. Moniri A., Miglietta L., Malpartida-Cardenas K., Pennisi I., Cacho-Soblechero M., Moser N., Holmes A., Georgiou P., Rodriguez-Manzano J. (2020). Amplification curve analysis: data-driven multiplexing using real-time digital PCR. Analytical chemistry. 92: 13134-13143. [DOI: 10.1021/acs.analchem.0c02253]
30. Nakamura T., Tomita S., Saito K. (2018). Metabolite profiling in dough during fermentation. Food Science and Technology Research. 24: 509-517. [DOI: 10.3136/fstr.24.509]. [Japanese with English abdtract]
31. Ogunremi O.R., Agrawal R., Sanni A. (2020). Production and characterization of volatile compounds and phytase from potentially probiotic yeasts isolated from traditional fermented cereal foods in Nigeria. Journal of Genetic Engineering and Biotechnology. 18: 16. [DOI: 10.1186/s43141-020-00031-z]
32. Olaniran A.O., Hiralal L., Mokoena M.P., Pillay B. (2017). Flavour-active volatile compounds in beer: production, regulation and control. Journal of the Institute of Brewing. 123: 13-23. [DOI: 10.1002/jib.389]
33. Ouyang X., Yuan G., Ren J., Wang L., Wang M., Li Y., Zhang B., Zhu B. (2017). Aromatic compounds and organoleptic features of fermented wolfberry wine: effects of maceration time. International Journal of Food Properties. 20: 2234-2248. [DOI: 10.1080/10942912.2016.1233435]
34. Park H., Park J.H., Jeon H.H., Woo D.U., Lee Y., Kang Y.J. (2020). Characterization of the complete chloroplast genome sequence of Wolffia globosa (Lemnoideae) and its phylogenetic relationships to other Araceae family. Mitochondrial DNA Part B. 5: 1905-1907. [DOI: 10.1080/23802359.2020.1754948]
35. Park M.K., Kim Y.-S. (2019). Distinctive formation of volatile compounds in fermented rice inoculated by different molds, yeasts, and lactic acid bacteria. Molecules. 24: 2123. [DOI: 10.3390/molecules24112123]
36. Pavlovica S., Gaidule A., Zicmanis A. (2014). Synthesis of β-nitrostyrene in highly hydrophilic ionic liquid media. Latvian Journal of Chemistry. 52: 49-53. [DOI: 10.2478/ljc-2013-0005]
37. Pétel C., Onno B., Prost C. (2017). Sourdough volatile compounds and their contribution to bread: a review. Trends in Food Science and Technology. 59: 105-123. [DOI: 10.1016/j.tifs.2016.10.015]
38. Pico J., Antolín B., Román L., Gómez M., Bernal J. (2018). Analysis of volatile compounds in gluten-free bread crusts with an optimised and validated SPME-GC/QTOF methodology. Food Research International. 106: 686-695. [DOI: 10.1016/ j.foodres.2018.01.048]
39. Poveda J.M., Sánchez-Palomo E., Pérez-Coello M.S., Cabezas L. (2008). Volatile composition, olfactometry profile and sensory evaluation of semi-hard Spanish goat cheeses. Dairy Science and Technology. 88: 355-367. [DOI: 10.1051/dst:2007021]
40. Saerens S.M.G., Delvaux F.R., Verstrepen K.J., Thevelein J.M. (2010). Production and biological function of volatile esters in Saccharomyces cerevisiae. Microbial Biotechnology. 3: 165-177. [DOI: 10.1111/j.1751-7915.2009.00106.x]
41. Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W., Fungal Barcoding Consortium. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences. 109: 6241-6246. [DOI: 10.1073/pnas.1117018109]
42. Starowicz M. (2021). Analysis of volatiles in food products. Separations. 8: 157. [DOI: 10.3390/separations8090157]
43. Subari A., Razak A., Sumarmin R. (2021). Phylogenetic analysis of Rasbora spp. based on the mitochondrial DNA COI gene in Harapan forest. Jurnal Biologi Tropis. 21: 89-94. [DOI: 10.29303/jbt.v21i1.2351]
44. Synos K., Reynolds A.G., Bowen A.J. (2015). Effect of yeast strain on aroma compounds in Cabernet franc icewines. LWT - Food Science and Technology. 64: 227-235. [DOI: 10.1016/j.lwt. 2015.05.044]
45. Wailzer B., Kocker J., Wolschann P., Buchbauer G. (2016). Structural features for furan-derived fruity and meaty aroma impressions. Natural Product Communications. 11: 1475-1479. [DOI: 10.1177/1934578X1601101014]
46. Watanabe M., Uchida N., Fujita K., Yoshino T., Sakaguchi T. (2016). Bread and effervescent beverage productions with local microbes for the local revitalization. International Journal on Advanced Science, Engineering and Information Technology. 6: 381-384. [DOI: 10.18517/ijaseit.6.3.841]
47. Zahroh N., Utami U., Kusmiyati N. (2022). Effect of nitrogen source on growth endophytic yeast from Salacca edulis reinw. and bread quality analysis. Jurnal Biodjati. 7: 95-108. [DOI: 10.15575/biodjati.v7i1.16854]
48. Zhang L., Mi S., Liu R.-B., Sang Y.-X., Wang X.-H. (2020). Evaluation of volatile compounds during the fermentation process of yogurts by Streptococcus thermophilus based on odor activity value and heat map analysis. International Journal of Analytical Chemistry. 2020: 3242854. [DOI: 10.1155/2020/ 3242854]