Volume 12, Issue 4 (December 2025)                   J. Food Qual. Hazards Control 2025, 12(4): 263-270 | Back to browse issues page

Ethics code: Not applicable


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sabrinatami Z, Purwandari F, Utami T, Cahyanto M. Comparison of Acid Fermentation under Vacuum and by Conventional Method in Tempeh Production: Microbial and Chemical Changes. J. Food Qual. Hazards Control 2025; 12 (4) :263-270
URL: http://jfqhc.ssu.ac.ir/article-1-1322-en.html
Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281, Indonesia , mn_cahyanto@ugm.ac.id
Abstract:   (42 Views)
Background: In conventional tempeh processing, water is required at most steps, including the acid fermentation by soaking. In this study, vacuum conditions during acid fermentation were employed instead of soaking soybeans to reduce the water requirement and wastewater generated. This study aimed to evaluate the microbial and chemical changes during acid fermentation under vacuum conditions.
Methods: Tempeh processing started by hydrating peeled soybeans with water, followed by incubation under vacuum at pressure101.3, 60.7, and 19.2 kPa. Samples were taken every 6 h to analyse Lactic Acid Bacteria (LAB) growth, pH, and titratable acidity. Crude protein and anti-nutritional factors were analysed at the beginning and end of the fermentation.
Results: LAB grew and reached the stationary phase after 48 h compared 18 h in the conventional methods. The pH of soybeans decreased to below 6.0 after 24 h and 48 h of acid fermentation by the conventional and vacuum methods, respectively. Titratable acidity increased during acid fermentation. Protein, phytic acid, and tannin contents changed significantly during conventional acid fermentation; however these compounds did not change significantly during acid fermentation under vacuum.
Conclusion: Acid fermentation with vacuum methods showed potential for reducing anti-nutrients such as phytic acid and tannins in soybeans. Further optimization is required to improve LAB growth under vacuum conditions.

DOI: 10.18502/jfqhc.12.4.20404
Full-Text [PDF 327 kb]   (28 Downloads)    
Type of Study: Original article | Subject: Special
Received: 25/01/09 | Accepted: 25/11/20 | Published: 25/12/21

References
1. Abu-Salem F.M., Mohamed R.K., Gibriel A.Y., Rasmy N.M.H. (2014). Levels of some antinutritional factors in tempeh produced from some legumes and jojobas seeds. International Journal of Nutrition and Food Engineering. 8: 296-301. [DOI: 10.5281/zenodo.1093040] [[DOI: 10.5281/zenodo.1093040]]
2. Adebayo S.F. (2014). Effect of soaking time on the proximate, mineral compositions and anti-nutritional factors of lima bean. Food Science and Quality Management. 27: 1-3.
3. Adeyemo S.M., Onilude A.A. (2013). Enzymatic reduction of anti-nutritional factors in fermenting soybeans by Lactobacillus plantarum isolates from fermenting cereals. Nigerian Food Journal. 31: 84-90. [DOI: 10.1016/s0189-7241(15)30080-1] [DOI:10.1016/S0189-7241(15)30080-1]
4. Avilés-Gaxiola S., Chuck-Hernández C., Serna Saldívar S.O. (2018). Inactivation methods of trypsin inhibitor in legumes: a review. Journal of Food Science. 83: 17-29. [DOI: 10.1111/ 1750-3841.13985] [DOI:10.1111/1750-3841.13985] [PMID]
5. Ayed L., Hamdi M. (2002). Culture conditions of tannase production by Lactobacillus plantarum. Biotechnology Letters. 24: 1763-1765. [DOI: 10.1023/A:1020696801584] [DOI:10.1023/A:1020696801584]
6. Boland F.E., Lin R.C., Mulvaney T.R., Mcclure F.D., Johnston M.R. (1981). pH determination in acidified foods: collaborative study. Journal of the AOAC International. 64: 332-336. [DOI: 10.1093/jaoac/64.2.332] [DOI:10.1093/jaoac/64.2.332]
7. BPS-Statistics Indonesia (2024). Statistical yearbook of Indonesia 2024. Badan Pusat Statistik, Jakarta, Indonesia. 52. URL: https://pst.bps.go.id.
8. Chauhan D., Kumar K., Ahmed N., Thakur P., Rizvi Q.U.E.H., Jan S., Yadav A.N. (2022). Impact of soaking, germination, fermentation, and roasting treatments on nutritional, anti-nutritional, and bioactive composition of black soybean (Glycine max L.). Journal of Applied Biology and Biotechnology. 10: 186-192. [DOI: 10.7324/JABB.2022.100523] [DOI:10.7324/JABB.2022.100523]
9. Chinma C.E., Azeez S.O., Sulayman H.T., Alhassan K., Alozie S.N., Gbadamosi H.D., Danbaba N., Oboh H.A., Anuonye J.C., Adebo O.A. (2020). Evaluation of fermented African yam bean flour composition and influence of substitution levels on properties of wheat bread. Journal of Food Science. 85: 4281-4289. [DOI: 10.1111/1750-3841.15527] [DOI:10.1111/1750-3841.15527] [PMID]
10. Cui L., Li D.J., Liu C.Q. (2012). Effect of fermentation on the nutritive value of maize. International Journal of Food Science and Technology. 47: 755-760. [DOI: 10.1111/j.1365-2621. 2011.02904.x] [DOI:10.1111/j.1365-2621.2011.02904.x]
11. Davies N.T., Reid H. (1979). An evaluation of the phytate, zinc, copper, iron and manganese contents of, and Zn availability from soya based textured-vegetable-protein meat-substitutes or meat-extenders. British Journal of Nutrition. 41: 579-589. [DOI: 10.1079/bjn19790073] [DOI:10.1079/BJN19790073] [PMID]
12. Efriwati, Suwanto A., Rahayu G., Nuraida L. (2013). Population dynamics of yeasts and lactic acid bacteria (LAB) during tempeh production. Hayati Journal of Biosciences. 20: 57-64. [DOI: 10.4308/hjb.20.2.57] [DOI:10.4308/hjb.20.2.57]
13. Hasbullah, Silvy D. (2020). Study of tempe production from dried peeled soybeans. IOP conference series: earth and environmental science. 515: 012059. [DOI: 10.1088/1755-1315/515/1/012059] [DOI:10.1088/1755-1315/515/1/012059]
14. Hendek Ertop M., Bektaş M. (2018). Enhancement of bioavailable micronutrients and reduction of antinutrients in foods with some processes. Food and Health. 4: 159-165. [DOI: 10.3153/ fh18016] [DOI:10.3153/FH18016]
15. Kakade M.L., Rackis J.J., McGhee J.E., Puski G. (1974). Determination of trypsin inhibitor activity of soy products: a collaborative analysis of an improved procedure. Cereal Chemistry. 51: 376-382.
16. Kohli V., Singha S. (2024). Protein digestibility of soybean: how processing affects seed structure, protein and non-protein components. Discover Food. 4. [DOI: 10.1007/s44187-024-00076-w] [DOI:10.1007/s44187-024-00076-w]
17. Mulyowidarso R.K., Fleet G.H., Buckle K.A. (1989). The microbial ecology of soybean soaking for tempe production. International Journal of Food Microbiology. 8: 35-46. [DOI: 10.1016/0168-1605(89)90078-0] [DOI:10.1016/0168-1605(89)90078-0] [PMID]
18. Mulyowidarso R.K., Fleet G.H., Buckle K.A. (1991). Changes in the concentration of organic acids during the soaking of soybeans for tempe production. International Journal of Food Science and Technology. 26: 595-606. [DOI: 10.1111/j.1365-2621.1991.tb02005.x] [DOI:10.1111/j.1365-2621.1991.tb02005.x]
19. Nout M.J.R., Kiers J.L. (2005). Tempe fermentation, innovation and functionality: update into the third millenium. Journal of Applied Microbiology. 98: 789-805. [DOI: 10.1111/j.1365-2672. 2004.02471.x] [DOI:10.1111/j.1365-2672.2004.02471.x] [PMID]
20. Nurdini A.L., Nuraida L., Suwanto A., Suliantari (2015). Microbial growth dynamics during tempe fermentation in two different home industries. International Food Research Journal. 22: 1668-1674.
21. Obadina A.O., Akinola O.J., Shittu T.A., Bakare H.A. (2013). Effect of natural fermentation on the chemical and nutritional composition of fermented soymilk nono. Nigerian Food Journal. 31: 91-97. [DOI: 10.1016/s0189-7241(15)30081-3] [DOI:10.1016/S0189-7241(15)30081-3]
22. Omodara T.R., Aderibigbe E.Y. (2019). Comparative studies on the effect of fermentation on the nutritional compositions and anti-nutritional levels of Glycine max fermented products: tempeh and soy-iru. Annual Research and Review in Biology. 32: 1-9. [DOI: 10.9734/arrb/2019/v32i430094] [DOI:10.9734/arrb/2019/v32i430094]
23. Pranoto Y., Anggrahini S., Efendi Z. (2013). Effect of natural and Lactobacillus plantarum fermentation on in-vitro protein and starch digestibilities of sorghum flour. Food Bioscience. 2: 46-52. [DOI: 10.1016/j.fbio.2013.04.001] [DOI:10.1016/j.fbio.2013.04.001]
24. Radita R., Suwanto A., Kurosawa N., Wahyudi A.T., Rusmana I. (2017). Metagenome analysis of tempeh production: where did the bacterial community in tempeh come from? Malaysian Journal of Microbiology. 13: 280-288. [DOI: 10.21161/ mjm.101417] [DOI:10.21161/mjm.101417]
25. Ranganna S. (1977). Manual of analysis of fruit and vegetable products. Tata McGraw-Hill Publishing Company, New Delhi, India. pp: 69.
26. Reale A., Konietzny U., Coppola R., Sorrentino E., Greiner R. (2007). The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation. Journal of Agricultural and Food Chemistry. 55: 2993-2997. [DOI: 10.1021/jf063507n] [DOI:10.1021/jf063507n] [PMID]
27. Shurtleff W., Aoyagi A. (2001). The book of tempeh. 2nd edition. Ten Speed Press, California, The United States of America. pp: 8.
28. Thiex N.J., Manson H., Anderson S., Persson J. (2002). Determination of crude protein in animal feed, forage, grain, and oilseeds by using block digestion with a copper catalyst and steam distillation into boric acid: collaborative study. Journal of AOAC International. 85: 309-317. [DOI: 10.1093/jaoac/85.2.309] [DOI:10.1093/jaoac/85.2.309] [PMID]
29. Voss R.H., Ermler U., Essen L.O., Wenzl G., Kim Y.M., Flecker P. (1996). Crystal structure of the bifunctional soybean Bowman-Birk inhibitor at 0.28-nm resolution. European Journal of Biochemistry. 242: 122-131. [DOI: 10.1111/j.1432-1033. 1996.0122r.x] [DOI:10.1111/j.1432-1033.1996.0122r.x] [PMID]
30. Worku A., Sahu O. (2017). Significance of fermentation process on biochemical properties of Phaseolus vulgaris (red beans). Biotechnology Reports. 16: 5-11. [DOI: 10.1016/ j.btre.2017.09.001] [DOI:10.1016/j.btre.2017.09.001] [PMID] [PMCID]
31. Yang H.W., Hsu C.K., Yang Y.F. (2014). Effect of thermal treatments on anti-nutritional factors and antioxidant capabilities in yellow soybeans and green-cotyledon small black soybeans. Journal of the Science of Food and Agriculture. 94: 1794-1801. [DOI: 10.1002/jsfa.6494] [DOI:10.1002/jsfa.6494] [PMID]
32. Yudianti N.F., Yanti R., Cahyanto M.N., Rahayu E.S., Utami T. (2020). Isolation and characterization of lactic acid bacteria from legume soaking water of tempeh productions. Digital Press Life Sciences. 2: 00003. [DOI: 10.29037/digitalpress.22328] [DOI:10.29037/digitalpress.22328]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb