Volume 12, Issue 4 (December 2025)                   J. Food Qual. Hazards Control 2025, 12(4): 284-292 | Back to browse issues page

Ethics code: Not applicable


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amanto B, Samanhudi S, Ariviani S, Prabawa S. Effect of Drying Method on Physical and Chemical Properties of Butternut Squash Flour (Cucurbita moschata Duchesne ex Poiret). J. Food Qual. Hazards Control 2025; 12 (4) :284-292
URL: http://jfqhc.ssu.ac.ir/article-1-1337-en.html
Lectures in Program of Agricultural Science, Faculty of Agricultural, Sebelas Maret University (UNS) Surakarta, Indonesia
Abstract:   (47 Views)
Background: Butternut squash (Cucurbita moschata Duchesne ex Poiret) is a type of Cucurbita moschata that is potentially a source of beta-carotene and has high antioxidant activity. The Osmotic Dehydration (OD) pretreatment has been used to retain the colour of dried butternut squash cubes. This study investigated the effects of the drying method, i.e., freeze drying, cabinet drying, And vacuum drying of butternut squash cubes with and without OD pretreatment on the flour characteristics.
Methods: The study was conducted at the Faculty of Agriculture, UNS Surakarta, January 2024. Butternut squash was peeled and cut into 1×1×1 cm cubes. The OD pretreatment was carried out in 15% (w/v) salt solution. The cubes treated with or without OD were then dried, further ground into powder, and sieved to produce flour. The flour’s characteristics tested included moisture, beta-carotene, antioxidant activity, colour, and pasting properties. The data was statistically analyzed with analysis of variance, followed by the Duncan multiple range test at p<0.05 using IBM Statistics 25.
Results: The drying method significantly impacted the characteristics of the butternut squash flour. The moisture, beta-carotene, and antioxidant activity of flour pretreated with OD were lower than those without OD in all drying techniques. The highest L, b, and chroma values were observed in freeze dried and OD samples, and the lowest were in the cabinet dried and non-OD samples. OD pretreatment generated a denser microstructure with fewer cavities; protein and fiber on the starch granule surface were replaced by salt, causing greater starch aggregation, resulting in flour with higher thermal stability than that from non-OD pretreatment.
Conclusions: The drying methods impacted the chemical, physical, and pasting properties of butternut squash flour. Although OD pretreatment reduced the beta-carotene content and antioxidant activity of flour, the treatment improved thermal stability, making it suitable for a wide range of food applications.

DOI: 10.18502/jfqhc.12.4.20406

 
Full-Text [PDF 778 kb]   (21 Downloads)    
Type of Study: Original article | Subject: Special
Received: 25/02/18 | Accepted: 25/11/25 | Published: 25/12/21

References
1. Aguilera J.M. (2005). Why food microstructure? Journal of Food Engineering. 67: 3-11. [DOI: 10.1016/j.jfoodeng.2004.05.050] [DOI:10.1016/j.jfoodeng.2004.05.050]
2. Almena A., Goode K.R., Bakalis S., Fryer P.J., Lopez-Quiroga E. (2019). Optimising food dehydration processes: energy-efficient drum-dryer operation. Energy Procedia. 161: 174-181. [DOI: 10.1016/j.egypro.2019.02.078] [DOI:10.1016/j.egypro.2019.02.078]
3. Alzamora S.M., Viollaz P.E., Martínez V.Y., Nieto A.B., Salvatori D. (2008). Exploring the linear viscoelastic properties structure relationship in processed fruit tissues. In: Gutiérrez-López, G.F., Barbosa-Cánovas, G.V., Welti-Chanes, J., Parada-Arias, E. (Editors). Food engineering: integrated approaches. Springer, New York, NY, United States. pp: 155-181. [DOI: 10.1007/978-0-387-75430-7_9] [DOI:10.1007/978-0-387-75430-7_9]
4. Amanto B.S., Samanhudi S., Ariviani S., Prabawa S. (2024). Osmotic dehydration optimization of butternut squash (Cucurbita moschata Duch) using response surface methodology. Food Research. 8: 201-209. [DOI: 10.26656/fr.2017.8(S2).152] [DOI:10.26656/fr.2017.8(S2).152]
5. Aras L., Supratomo S., Salengke S. (2019). Effect of temperature and concentration of sugar solution in the process of osmotic dehydration of papaya (Carica papaya L .). Jurnal AgriTechno. 12: 110-120. [DOI: 10.20956/at.v0i0.219] [DOI:10.20956/at.v0i0.219]
6. Armesto J., Rocchetti,G., Senizza B., Pateiro M., Barba F.J., Domínguez R., Lucini L., Lorenzo J.M. (2020). Nutritional characterization of butternut squash (Cucurbita moschata D.): effect of variety (Ariel vs. Pluto) and farming type (conventional vs. organic). Food Research International. 132: 109052. [DOI: 10.1016/j.foodres.2020.109052] [DOI:10.1016/j.foodres.2020.109052] [PMID]
7. Aviara N.A., Igbeka J.C., Nwokocha L.M. (2010). Effect of drying temperature on physicochemical properties of cassava starch. International Agrophysics. 24: 219-225.
8. Aydin E., Gocmen D. (2015). The influences of drying method and metabisulfite pre-treatment on the color, functional properties and phenolic acids contents and bioaccessibility of pumpkin flour. Lwt-Food Science and Technology. 60:385-392. [DOI: 10.1016/j.lwt.2014.08.025] [DOI:10.1016/j.lwt.2014.08.025]
9. Beaudry C, Raghavan G.S.V., Ratti C., Rennie T.J. (2004). Effect of four drying methods on the quality of osmotically dehydrated cranberries. Drying Technology. 22: 521-539. [DOI: 10.1081/DRT-120029999] [DOI:10.1081/DRT-120029999]
10. Chen X.D., Mujumdar A.S. (2008). Drying technologies in food processing. 1st edition. Wiley-Blackwell Publishing, Hoboken, New Jersey, United States. pp: 137-139.
11. Chinnasamy G., Dekeba K., Sundramurthy V.B., Dereje B. (2022). Physicochemical properties of tef starch: morphological, thermal, thermogravimetric, and pasting properties. International Journal of Food Properties. 25: 1668-1682. [DOI: 10.1080/ 10942912.2022.2098973]. [DOI:10.1080/10942912.2022.2098973]
12. Chong C.H., Law C.L. (2011). Drying of exotic fruits. In: Jangam S.V., Law C.L., Mujumdar A.S. (Editors). Vegetables and fruits volume 2. Singapore. pp: 3-4.
13. Ciurzyńska A., Lenart A., Kawka P. (2013). Influence of chemical composition and structure on sorption properties of freeze-dried pumpkin. Drying Technology. 31: 655-665. [DOI: 10.1080/07373937.2012.753609] [DOI:10.1080/07373937.2012.753609]
14. Dwivedi S., Kumar V., Singh R., Srivastava A. (2023). Effect of Osmotic dehydration on quality of pumpkin flour. Journal of Agricultural Engineering and Food Technology. 10: 1-5.
15. Fiqtinovri S.M. (2020). Chemical characteristics and amilography of modified cassava flour of singkong gajah (Manihot utilissima). Jurnal Agroindustri Halal. 6: 49-56. [DOI: 10.30997/jah.v6i1.2162] [DOI:10.30997/jah.v6i1.2162]
16. Garcia Loredo A.B., Guerrero S.N., Gomez P.L., Alzamora S.M. (2013). Relationships between rheological properties, texture and structure of apple (Granny Smith var.) affected by blanching and/or osmotic dehydration. Food and Bioprocess Technology. 6: 475-488. [DOI: 10.1007/s11947-011-0701-9] [DOI:10.1007/s11947-011-0701-9]
17. Kartikasari S.N., Sari P., Subagio A. (2016). Characterization of chemical properties, amylograpic profiles (RVA) and granular morphology (SEM) of biologically modified cassava starch. Jurnal Agroteknologi. 10: 12-24.
18. Kim J., Chang Y.H., and Lee Y. (2023). Effects of NaCl on the physical properties of Cornstarch-Methyl Cellulose blend and on its gel prepared with rice flour in a model system. Foods. 12: 4390. [DOI: 10.3390/foods12244390] [DOI:10.3390/foods12244390] [PMID] [PMCID]
19. Kose S., Kose Y.E., Ceylan M.M. (2019). Impact of sodium chloride and ascorbic acid on pasting and textural parameters of corn starch-water and milk systems. International Journal of Agriculture and Biological Sciences. 9-16.
20. Kudra T., Mujumdar A.S. (2009). Advanced drying technologies. 2nd edition. CRC Press, Taylor and Francis Group, Boca Raton, Florida, United States. pp: 11-16. [DOI:10.1201/9781420073898]
21. Kunzek H., Kabbert R.,Gloyna D. (1999). Aspects of material science in food processing: changes in plant cell walls of fruits and vegetables. European Food Research and Technology. 208: 233-250. [DOI: 10.1007/s002170050410] [DOI:10.1007/s002170050410]
22. Manzoor M., Shukla R.N., Mishra A.A., Fatima A., Nayik G.A. (2017). Osmotic dehydration characteristics of pumpkin slices using ternary osmotic solution of sucrose and sodium chloride. Journal of Food Processing and Technology. 8: 669. [DOI: 10.4172/2157-7110.1000669] [DOI:10.4172/2157-7110.1000669]
23. Monteiro R.L., Link J.V., Tribuzi G., Carciofi B.A.M. Laurindo J.B. (2018). Effect of multi-flash drying and microwave vacuum drying on the microstructure and texture of pumpkin slices. LWT-Foods Science Technology. 96: 612-619. [DOI: 10.1016/j.lwt.2018.06.023] [DOI:10.1016/j.lwt.2018.06.023]
24. Muhandri T. (2007). The effects of particle size, solid content, NaCl and Na2CO3 on the amilographic characteristics of corn flour and corn starch. Jurnal Teknologi dan Industri Pangan. 18: 109-117.
25. Paradkar V., Sahu G. (2018). Studies on drying of osmotically dehydrated apple slices. International Journal of Current Microbiology and Applied Sciences. 7: 633-642. [DOI: 10.20546/ijcmas.2018.711.077] [DOI:10.20546/ijcmas.2018.711.077]
26. Que F., Mao L., Fang X., Wu T. (2008). Comparison of hot air-drying and freeze-drying on the physicochemical properties and antioxidant activities of pumpkin (Cucurbita moschata Duch.) flours. International Journal of Food Science and Technology. 43: 1195-1201. [DOI: 10.1111/j.1365-2621.2007.01590.x] [DOI:10.1111/j.1365-2621.2007.01590.x]
27. Rahman M.M., Gu Y.T., Karim M.A. (2018). Development of realistic food microstructure considering the structural heterogeneity of cells and intercellular space. Food Structure. 15: 9-16. [DOI: 10.1016/j.foostr.2018.01.002] [DOI:10.1016/j.foostr.2018.01.002]
28. Ramya V., Jain N.K. (2017). A review on osmotic dehydration of fruits and vegetables: an integrated approach. Journal of Food Process Engineering. 40: 1-22. [DOI: 10.1111/jfpe.12440]. [DOI:10.1111/jfpe.12440]
29. Rodrigues S., Fernandes F.A.N. (2007). Image analysis of osmotically dehydrated fruits: melons dehydration in a ternary system. European Food Research and Technology. 225: 685-691. [DOI: 10.1007/s00217-006-0466-y] [DOI:10.1007/s00217-006-0466-y]
30. Roongruangsri W., Bronlund J.E. (2015). A review of drying processes in the production of pumpkin powder. International Journal of Food Engineering. 11: 789-799. [DOI: 10.1515/ijfe-2015-0168] [DOI:10.1515/ijfe-2015-0168]
31. Silva K.S., Fernandes M.A., Mauro M.A. (2014). Effect of calcium on the osmotic dehydration kinetics and quality of pineapple. Journal of Food Engineering. 134: 37-44. [DOI: 10.1016/j.jfoodeng.2014.02.020] [DOI:10.1016/j.jfoodeng.2014.02.020]
32. Singh J., Singh N. (2003). Studies on the morphological and rheological properties of granular cold water soluble corn and potato starches. Food Hydrocolloids. 17: 63-72. [DOI: 10.1016/S0268-005X(02)00036-X] [DOI:10.1016/S0268-005X(02)00036-X]
33. Tan H.L., Tan T.C., Easa A.M. (2020). Effects of sodium chloride or salt substitutes on rheological properties and water-holding capacity of flour and hardness of noodles. Food Structure. 26: 100154. [DOI: 10.1016/j.foostr.2020.100154] [DOI:10.1016/j.foostr.2020.100154]
34. Tortoe C. (2010). A review of osmodehydration for food industry. African Journal of Food Science. 4: 303-324.
35. Varavinit S., Shobsngob S., Varanyanond W., Chinachoti P., Naivikul O. (2003). Effect of amylose content on gelatinization, retrogradation and pasting properties of flours from different cultivars of thai rice. Starch. 55: 410-415. [DOI: 10.1002/star.200300185] [DOI:10.1002/star.200300185]
36. Yadav A.K., Singh S.V. (2014). Osmotic dehydration of fruits and vegetables: a review. Journal of Food Science and Technology. 51: 1654-1673. [DOI: 10.1007/s13197-012-0659-2] [DOI:10.1007/s13197-012-0659-2] [PMID] [PMCID]
37. Zhang M., Ma J., Li J., Bian H.,Yan Z., Wang D., Xu W., Zhao Y., Shu L. (2023). Influence of NaCl on lipid oxidation and endogenous pro-oxidants/antioxidants in chicken meat. Food Science of Animal Products. 1: 9240010. [DOI: 10.26599/FSAP.2023.9240010]. [DOI:10.26599/FSAP.2023.9240010]
38. Zhang Z., Lyu J., Lou H., Tang C., Zheng H., Chen S., Yu M., Hu W., Jin L., Wang C., Lv H., Lu H. (2021). Effects of elevated sodium chloride on shelf-life and antioxidant ability of grape juice sports drink. Journal of Food Processing and Preservation. 45: e15049. [DOI: 10.1111/jfpp.15049] [DOI:10.1111/jfpp.15049]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb