1. Aguilera J.M. (2005). Why food microstructure? Journal of Food Engineering. 67: 3-11. [DOI: 10.1016/j.jfoodeng.2004.05.050] [
DOI:10.1016/j.jfoodeng.2004.05.050]
2. Almena A., Goode K.R., Bakalis S., Fryer P.J., Lopez-Quiroga E. (2019). Optimising food dehydration processes: energy-efficient drum-dryer operation. Energy Procedia. 161: 174-181. [DOI: 10.1016/j.egypro.2019.02.078] [
DOI:10.1016/j.egypro.2019.02.078]
3. Alzamora S.M., Viollaz P.E., Martínez V.Y., Nieto A.B., Salvatori D. (2008). Exploring the linear viscoelastic properties structure relationship in processed fruit tissues. In: Gutiérrez-López, G.F., Barbosa-Cánovas, G.V., Welti-Chanes, J., Parada-Arias, E. (Editors). Food engineering: integrated approaches. Springer, New York, NY, United States. pp: 155-181. [DOI: 10.1007/978-0-387-75430-7_9] [
DOI:10.1007/978-0-387-75430-7_9]
4. Amanto B.S., Samanhudi S., Ariviani S., Prabawa S. (2024). Osmotic dehydration optimization of butternut squash (Cucurbita moschata Duch) using response surface methodology. Food Research. 8: 201-209. [DOI: 10.26656/fr.2017.8(S2).152] [
DOI:10.26656/fr.2017.8(S2).152]
5. Aras L., Supratomo S., Salengke S. (2019). Effect of temperature and concentration of sugar solution in the process of osmotic dehydration of papaya (Carica papaya L .). Jurnal AgriTechno. 12: 110-120. [DOI: 10.20956/at.v0i0.219] [
DOI:10.20956/at.v0i0.219]
6. Armesto J., Rocchetti,G., Senizza B., Pateiro M., Barba F.J., Domínguez R., Lucini L., Lorenzo J.M. (2020). Nutritional characterization of butternut squash (Cucurbita moschata D.): effect of variety (Ariel vs. Pluto) and farming type (conventional vs. organic). Food Research International. 132: 109052. [DOI: 10.1016/j.foodres.2020.109052] [
DOI:10.1016/j.foodres.2020.109052] [
PMID]
7. Aviara N.A., Igbeka J.C., Nwokocha L.M. (2010). Effect of drying temperature on physicochemical properties of cassava starch. International Agrophysics. 24: 219-225.
8. Aydin E., Gocmen D. (2015). The influences of drying method and metabisulfite pre-treatment on the color, functional properties and phenolic acids contents and bioaccessibility of pumpkin flour. Lwt-Food Science and Technology. 60:385-392. [DOI: 10.1016/j.lwt.2014.08.025] [
DOI:10.1016/j.lwt.2014.08.025]
9. Beaudry C, Raghavan G.S.V., Ratti C., Rennie T.J. (2004). Effect of four drying methods on the quality of osmotically dehydrated cranberries. Drying Technology. 22: 521-539. [DOI: 10.1081/DRT-120029999] [
DOI:10.1081/DRT-120029999]
10. Chen X.D., Mujumdar A.S. (2008). Drying technologies in food processing. 1st edition. Wiley-Blackwell Publishing, Hoboken, New Jersey, United States. pp: 137-139.
11. Chinnasamy G., Dekeba K., Sundramurthy V.B., Dereje B. (2022). Physicochemical properties of tef starch: morphological, thermal, thermogravimetric, and pasting properties. International Journal of Food Properties. 25: 1668-1682. [DOI: 10.1080/ 10942912.2022.2098973]. [
DOI:10.1080/10942912.2022.2098973]
12. Chong C.H., Law C.L. (2011). Drying of exotic fruits. In: Jangam S.V., Law C.L., Mujumdar A.S. (Editors). Vegetables and fruits volume 2. Singapore. pp: 3-4.
13. Ciurzyńska A., Lenart A., Kawka P. (2013). Influence of chemical composition and structure on sorption properties of freeze-dried pumpkin. Drying Technology. 31: 655-665. [DOI: 10.1080/07373937.2012.753609] [
DOI:10.1080/07373937.2012.753609]
14. Dwivedi S., Kumar V., Singh R., Srivastava A. (2023). Effect of Osmotic dehydration on quality of pumpkin flour. Journal of Agricultural Engineering and Food Technology. 10: 1-5.
15. Fiqtinovri S.M. (2020). Chemical characteristics and amilography of modified cassava flour of singkong gajah (Manihot utilissima). Jurnal Agroindustri Halal. 6: 49-56. [DOI: 10.30997/jah.v6i1.2162] [
DOI:10.30997/jah.v6i1.2162]
16. Garcia Loredo A.B., Guerrero S.N., Gomez P.L., Alzamora S.M. (2013). Relationships between rheological properties, texture and structure of apple (Granny Smith var.) affected by blanching and/or osmotic dehydration. Food and Bioprocess Technology. 6: 475-488. [DOI: 10.1007/s11947-011-0701-9] [
DOI:10.1007/s11947-011-0701-9]
17. Kartikasari S.N., Sari P., Subagio A. (2016). Characterization of chemical properties, amylograpic profiles (RVA) and granular morphology (SEM) of biologically modified cassava starch. Jurnal Agroteknologi. 10: 12-24.
18. Kim J., Chang Y.H., and Lee Y. (2023). Effects of NaCl on the physical properties of Cornstarch-Methyl Cellulose blend and on its gel prepared with rice flour in a model system. Foods. 12: 4390. [DOI: 10.3390/foods12244390] [
DOI:10.3390/foods12244390] [
PMID] [
PMCID]
19. Kose S., Kose Y.E., Ceylan M.M. (2019). Impact of sodium chloride and ascorbic acid on pasting and textural parameters of corn starch-water and milk systems. International Journal of Agriculture and Biological Sciences. 9-16.
20. Kudra T., Mujumdar A.S. (2009). Advanced drying technologies. 2nd edition. CRC Press, Taylor and Francis Group, Boca Raton, Florida, United States. pp: 11-16. [
DOI:10.1201/9781420073898]
21. Kunzek H., Kabbert R.,Gloyna D. (1999). Aspects of material science in food processing: changes in plant cell walls of fruits and vegetables. European Food Research and Technology. 208: 233-250. [DOI: 10.1007/s002170050410] [
DOI:10.1007/s002170050410]
22. Manzoor M., Shukla R.N., Mishra A.A., Fatima A., Nayik G.A. (2017). Osmotic dehydration characteristics of pumpkin slices using ternary osmotic solution of sucrose and sodium chloride. Journal of Food Processing and Technology. 8: 669. [DOI: 10.4172/2157-7110.1000669] [
DOI:10.4172/2157-7110.1000669]
23. Monteiro R.L., Link J.V., Tribuzi G., Carciofi B.A.M. Laurindo J.B. (2018). Effect of multi-flash drying and microwave vacuum drying on the microstructure and texture of pumpkin slices. LWT-Foods Science Technology. 96: 612-619. [DOI: 10.1016/j.lwt.2018.06.023] [
DOI:10.1016/j.lwt.2018.06.023]
24. Muhandri T. (2007). The effects of particle size, solid content, NaCl and Na2CO3 on the amilographic characteristics of corn flour and corn starch. Jurnal Teknologi dan Industri Pangan. 18: 109-117.
25. Paradkar V., Sahu G. (2018). Studies on drying of osmotically dehydrated apple slices. International Journal of Current Microbiology and Applied Sciences. 7: 633-642. [DOI: 10.20546/ijcmas.2018.711.077] [
DOI:10.20546/ijcmas.2018.711.077]
26. Que F., Mao L., Fang X., Wu T. (2008). Comparison of hot air-drying and freeze-drying on the physicochemical properties and antioxidant activities of pumpkin (Cucurbita moschata Duch.) flours. International Journal of Food Science and Technology. 43: 1195-1201. [DOI: 10.1111/j.1365-2621.2007.01590.x] [
DOI:10.1111/j.1365-2621.2007.01590.x]
27. Rahman M.M., Gu Y.T., Karim M.A. (2018). Development of realistic food microstructure considering the structural heterogeneity of cells and intercellular space. Food Structure. 15: 9-16. [DOI: 10.1016/j.foostr.2018.01.002] [
DOI:10.1016/j.foostr.2018.01.002]
28. Ramya V., Jain N.K. (2017). A review on osmotic dehydration of fruits and vegetables: an integrated approach. Journal of Food Process Engineering. 40: 1-22. [DOI: 10.1111/jfpe.12440]. [
DOI:10.1111/jfpe.12440]
29. Rodrigues S., Fernandes F.A.N. (2007). Image analysis of osmotically dehydrated fruits: melons dehydration in a ternary system. European Food Research and Technology. 225: 685-691. [DOI: 10.1007/s00217-006-0466-y] [
DOI:10.1007/s00217-006-0466-y]
30. Roongruangsri W., Bronlund J.E. (2015). A review of drying processes in the production of pumpkin powder. International Journal of Food Engineering. 11: 789-799. [DOI: 10.1515/ijfe-2015-0168] [
DOI:10.1515/ijfe-2015-0168]
31. Silva K.S., Fernandes M.A., Mauro M.A. (2014). Effect of calcium on the osmotic dehydration kinetics and quality of pineapple. Journal of Food Engineering. 134: 37-44. [DOI: 10.1016/j.jfoodeng.2014.02.020] [
DOI:10.1016/j.jfoodeng.2014.02.020]
32. Singh J., Singh N. (2003). Studies on the morphological and rheological properties of granular cold water soluble corn and potato starches. Food Hydrocolloids. 17: 63-72. [DOI: 10.1016/S0268-005X(02)00036-X] [
DOI:10.1016/S0268-005X(02)00036-X]
33. Tan H.L., Tan T.C., Easa A.M. (2020). Effects of sodium chloride or salt substitutes on rheological properties and water-holding capacity of flour and hardness of noodles. Food Structure. 26: 100154. [DOI: 10.1016/j.foostr.2020.100154] [
DOI:10.1016/j.foostr.2020.100154]
34. Tortoe C. (2010). A review of osmodehydration for food industry. African Journal of Food Science. 4: 303-324.
35. Varavinit S., Shobsngob S., Varanyanond W., Chinachoti P., Naivikul O. (2003). Effect of amylose content on gelatinization, retrogradation and pasting properties of flours from different cultivars of thai rice. Starch. 55: 410-415. [DOI: 10.1002/star.200300185] [
DOI:10.1002/star.200300185]
36. Yadav A.K., Singh S.V. (2014). Osmotic dehydration of fruits and vegetables: a review. Journal of Food Science and Technology. 51: 1654-1673. [DOI: 10.1007/s13197-012-0659-2] [
DOI:10.1007/s13197-012-0659-2] [
PMID] [
PMCID]
37. Zhang M., Ma J., Li J., Bian H.,Yan Z., Wang D., Xu W., Zhao Y., Shu L. (2023). Influence of NaCl on lipid oxidation and endogenous pro-oxidants/antioxidants in chicken meat. Food Science of Animal Products. 1: 9240010. [DOI: 10.26599/FSAP.2023.9240010]. [
DOI:10.26599/FSAP.2023.9240010]
38. Zhang Z., Lyu J., Lou H., Tang C., Zheng H., Chen S., Yu M., Hu W., Jin L., Wang C., Lv H., Lu H. (2021). Effects of elevated sodium chloride on shelf-life and antioxidant ability of grape juice sports drink. Journal of Food Processing and Preservation. 45: e15049. [DOI: 10.1111/jfpp.15049] [
DOI:10.1111/jfpp.15049]