Volume 12, Issue 4 (December 2025)                   J. Food Qual. Hazards Control 2025, 12(4): 243-262 | Back to browse issues page

Ethics code: Not applicable


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jani J, Azizi Suhaili M, Lin C, Mandrinos S. Integrating Mitochondrial 12S rRNA Sequencing and Bioinformatics for Halal Authentication: A Review. J. Food Qual. Hazards Control 2025; 12 (4) :243-262
URL: http://jfqhc.ssu.ac.ir/article-1-1358-en.html
Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400 Kota Kinabalu Sabah, Malaysia, Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400 Kota Kinabalu Sabah, Malaysia , jaeyres@ums.edu.my
Abstract:   (63 Views)
This study proposed a molecular framework to ensure compliance with Islamic dietary laws, aligning with the rapidly expanding global halal market projected to reach USD 3 trillion by 2027. The approach integrated mitochondrial 12S ribosomal RNA sequencing with bioinformatics tools using Next-Generation Sequencing (NGS) and Third-Generation Sequencing (TGS) technologies to facilitate accurate species identification, DNA barcoding, and meet origin authentication. The 12S ribosomal RNA gene provides high precision for species verification due to its conserved yet variable sequence regions. A bioinformatics pipeline incorporating Mothur and QIIME2 was developed to analyse sequencing outputs and validate species Operational Taxonomic Units (OTUs). This pipeline enhanced traceability and ensured compliance with halal regulatory standards. By detecting even trace residues of non-halal substances, the method strengthens food safety, prevents cross-contamination, and increases consumer trust. The significance of these molecular techniques is in ensuring the safety of food and preventing spoilage. By detecting residues of non-halal substances, this approach addressed significant concerns related to cross-contamination and labelling inaccuracies, enhancing transparency and strengthening consumer trust. Analysing halal certification practices as per industry traditions and international regulatory bodies, as well as the thought-provoking shift to align high-end technologies and foreign experts requires careful harmonisation. This study also focused on factors contributing to that harmonisation. To assess the possible future of halal verification, this review presented a prospective, amalgamating modern science with religious justice to achieve a functional balance and preserve the reliability of halal-validated products. These innovations enable higher levels of precision, transparency, and sustainability, which foster consumer trust and reinvigorate the global marketplace.

DOI: 10.18502/jfqhc.12.4.20403
Full-Text [PDF 962 kb]   (76 Downloads)    
Type of Study: Review article | Subject: Special
Received: 25/04/20 | Accepted: 25/11/25 | Published: 25/12/21

References
1. Absmeier E., Chandrasekaran V., O'Reilly F.J., Stowell J.a.W., Rappsilber J., Passmore L.A. (2023). Specific recognition and ubiquitination of translating ribosomes by mammalian CCR4-NOT. Nature Structural and Molecular Biology. 30: 1314-1322. [DOI: 10.1038/s41594-023-01075-8] [DOI:10.1038/s41594-023-01075-8] [PMID] [PMCID]
2. Ahsan M.U., Liu Q., Perdomo J.E., Fang L., Wang K. (2023). A survey of algorithms for the detection of genomic structural variants from long-read sequencing data. Nature Methods. 20: 1143-1158. [DOI: 10.1038/s41592-023-01932-w] [DOI:10.1038/s41592-023-01932-w] [PMID] [PMCID]
3. Aini S.R., Rohman A., Mulyanto M., Erwanto Y., Ansar A., Handayani B.R., Irnawati I. (2023). The metabolomics approach used for halal authentication analysis of food and pharmaceutical products: a review. Food Research. 7: 180-187. [DOI:10.26656/fr.2017.7(3).986]
4. Aksamentov I., Roemer C., Hodcroft E.B., Neher R.A. (2021). Nextclade: clade assignment, mutation calling and quality control for viral genomes. Journal of Open Source Software. 6: 3773. [DOI: 10.21105/joss.03773] [DOI:10.21105/joss.03773]
5. Aksin N., Aini F.N.Q. (2023). Halal Ṭayyib syaria’ in understanding the needs of consumer protection. Jurnal Meta-Yuridis. 6: 1-13. [DOI: 10.26877/m-y.v6i2.15560] [DOI:10.26877/m-y.v6i2.15560]
6. Algan F.M. (2023). Global standardization for a sustainable future. Current Research in Social Sciences. 9: 30-40. [DOI: 10.30613/ curesosc.1173926] [DOI:10.30613/curesosc.1173926]
7. Allam Z., Bibri S.E., Chabaud D., Moreno C. (2022). The theoretical, practical, and technological foundations of the 15-minute city model: proximity and its environmental, social, and economic benefits for sustainability. Energies. 15: 6042. [DOI: 10.3390/ en15166042] [DOI:10.3390/en15166042]
8. Amarasinghe S.L., Su S., Dong X., Zappia L., Ritchie M.E., Gouil Q. (2020). Opportunities and challenges in long-read sequencing data analysis. Genome Biology. 21: 30. [DOI: 10.1186/s13059-020-1935-5] [DOI:10.1186/s13059-020-1935-5] [PMID] [PMCID]
9. Amer M. (2024). Halal standards' implementation in Palestinian food sector: its drivers and impact on performance. Arab Gulf Journal of Scientific Research. 42: 2-29. [DOI: 10.1108/agjsr-09-2022-0168] [DOI:10.1108/AGJSR-09-2022-0168]
10. Aziz N., Bakry N., Habibi Mz M., Siddiq Armia M. (2023). The paradigm of modern food products and its relevance with the concept of food in the Quran. Heliyon. 9: e21358. [DOI: 10.1016/j. heliyon.2023.e21358] [DOI:10.1016/j.heliyon.2023.e21358] [PMID] [PMCID]
11. Bannor R.K., Arthur K.E., Oppong D., Oppong-Kyeremeh H. (2023). A comprehensive systematic review and bibliometric analysis of food fraud from a global perspective. Journal of Agriculture and Food Research. 14: 100686. [DOI: 10.1016/j.jafr. 2023.100686] [DOI:10.1016/j.jafr.2023.100686]
12. Bianconi I., Aschbacher R., Pagani E. (2023). Current uses and future perspectives of genomic technologies in clinical microbiology. Antibiotics. 12: 1580. [DOI: 10.3390/antibiotics12111580] [DOI:10.3390/antibiotics12111580] [PMID] [PMCID]
13. Bohmann K., Elbrecht V., Carøe C., Bista I., Leese F., Bunce M., Yu D.W., Seymour M., Dumbrell A.J., Creer S. (2022). Strategies for sample labelling and library preparation in DNA metabarcoding studies. Molecular Ecology Resources. 22: 1231-1246. [DOI: 10.1111/1755-0998.13512] [DOI:10.1111/1755-0998.13512] [PMID] [PMCID]
14. Bolger A.M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30: 2114-2120. [DOI: 10.1093/bioinformatics/btu170] [DOI:10.1093/bioinformatics/btu170] [PMID] [PMCID]
15. Borodinov A., Manoilov V., Zarutsky I., Petrov A., Kurochkin V., Saraev A. (2022). Machinelearning in base-calling for next-generation sequencing methods. Informatics and Automation. 21: 572-603. [DOI: 10.15622/ia.21.3.5] [DOI:10.15622/ia.21.3.5]
16. Bosona T., Gebresenbet G. (2023). The role of blockchain technology in promoting traceability systems in agri-food production and supply chains. Sensors. 23: 5342. [DOI: 10.3390/s23115342] [DOI:10.3390/s23115342] [PMID] [PMCID]
17. Boyrusbianto F.T., Utama D.T., Khikmawati I., Fadhila A., Volkandari S.D., Abdurrahman Z.H., Pramono A., Cahyadi M. (2023). A simplex and multiplex PCR assay for simultaneous detection of beef, pork, and chicken meat in sausages based on mitochondrial DNA Cytochrome oxidase sub-unit I. Food Research. 7: 188-193. [DOI: 10.26656/fr.2017.7(3).084] [DOI:10.26656/fr.2017.7(3).084]
18. Cahyadi M., Wibowo T., Pramono A., Abdurrahman Z.H. (2020). A novel multiplex-PCR assay to detect three non-halal meats contained in meatballs using mitochondrial 12S rRNA gene. Food Science of Animal Resources. 40: 628-635. [DOI: 10.5851/kosfa.2020.e40] [DOI:10.5851/kosfa.2020.e40] [PMID] [PMCID]
19. Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods. 13: 581-583. [DOI: 10.1038/ nmeth.3869] [DOI:10.1038/nmeth.3869] [PMID] [PMCID]
20. Cantalapiedra C.P., Hernández-Plaza A., Letunic I., Bork P., Huerta-Cepas J. (2021). eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Molecular Biology and Evolution. 38: 5825-5829. [DOI: 10.1093/molbev/msab293] [DOI:10.1093/molbev/msab293] [PMID] [PMCID]
21. Cao M.D., Ganesamoorthy D., Cooper M.A., Coin L.J.M. (2015). Realtime analysis and visualization of MinION sequencing data with npReader. Bioinformatics. 32: 764-766. [DOI: 10.1093/bioinformatics/btv658] [DOI:10.1093/bioinformatics/btv658] [PMID]
22. Chan A.H.E., Saralamba N., Saralamba S., Ruangsittichai J., Thaenkham U. (2022). The potential use of mitochondrial ribosomal genes (12S and 16S) in DNA barcoding and phylogenetic analysis of trematodes. BMC Genomics. 23: 104. [DOI: 10.1186/s12864-022-08302-4] [DOI:10.1186/s12864-022-08302-4] [PMID] [PMCID]
23. Chang J.J.M., Ip Y.C.A., Bauman A.G., Huang D. (2020). MINION-in-ARMS: nanopore sequencing to expedite barcoding of specimen-rich macrofaunal samples from autonomous reef monitoring structures. Frontiers in Marine Science. 7: 448. [DOI: 10.3389/fmars.2020. 00448] [DOI:10.3389/fmars.2020.00448]
24. Chen C., Wu Y., Li J., Wang X., Zeng Z., Xu J., Liu Y., Feng J., Chen H., He Y., Xia R. (2023). TBtools-II: a "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant. 16: 1733-1742. [DOI: 10.1016/j.molp.2023.09.010] [DOI:10.1016/j.molp.2023.09.010] [PMID]
25. Chen S., Zhou Y., Chen Y., Gu J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 34: i884-i890. [DOI: 10.1093/bioinformatics/bty560] [DOI:10.1093/bioinformatics/bty560] [PMID] [PMCID]
26. Cobbe J., Veale M., Singh J. (2023). Understanding accountability in algorithmic supply chains. Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency. 1186-1197. [DOI: 10.1145/3593013.3594073] [DOI:10.1145/3593013.3594073]
27. Daniel A.I., Fadaka A.O., Gokul A., Bakare O.O., Aina O., Fisher S., Burt A.F., Mavumengwana V., Keyster M., Klein A. (2022). Biofertilizer: the future of food security and food safety. Microorganisms. 10: 1220. [DOI: 10.3390/microorganisms10061220] [DOI:10.3390/microorganisms10061220] [PMID] [PMCID]
28. De Coster W., Weissensteiner M.H., Sedlazeck F.J. (2021). Towards population-scale long-read sequencing. Nature Reviews Genetics. 22: 572-587. [DOI: 10.1038/s41576-021-00367-3] [DOI:10.1038/s41576-021-00367-3] [PMID] [PMCID]
29. Delahoy M.J., Shah H.J., Weller D.L., Ray L.C., Smith K., McGuire S., Trevejo R.T., Walter E.S., Wymore K., Rissman T., McMillian M., Lathrop S., et al. (2023). Preliminary incidence and trends of infections caused by pathogens transmitted commonly through food - foodborne diseases active surveillance network, 10 U.S. sites, 2022. Morbidity and Mortality Weekly Report. 72: 701-706. [DOI: 10.15585/ mmwr.mm7226a1] [DOI:10.15585/mmwr.mm7226a1] [PMID] [PMCID]
30. Dubois B., Debode F., Hautier L., Hulin J., Martin G.S., Delvaux A., Janssen E., Mingeot D. (2022). A detailed workflow to develop QIIME2-formatted reference databases for taxonomic analysis of DNA metabarcoding data. BMC Genomic Data. 23: 53. [DOI: 10.1186/s12863-022-01045-w] [DOI:10.1186/s12863-022-01067-5] [PMID] [PMCID]
31. Dunham J.P., Friesen M.L. (2013). A cost-effective method for high-throughput construction of Illumina sequencing libraries. Cold Spring Harbor Protocols. 2013: 820-834. [DOI: 10.1101/pdb.prot074187] [DOI:10.1101/pdb.prot074187] [PMID] [PMCID]
32. El-Nabi S.E.H., Hussein D., Khallafa A.G. (2021). Molecular detection of food fraud targeting mitochondrial 12S rRNA gene sequencing. Journal of Bioscience and Applied Research. 7: 17-22. [DOI: 10.21608/jbaar.2021.167091] [DOI:10.21608/jbaar.2021.167091]
33. Ezeaku H.C., Asongu S.A., Nnanna J. (2021). Volatility of international commodity prices in times of COVID-19: effects of oil supply and global demand shocks. The Extractive Industries and Society. 8: 257-270. [DOI: 10.1016/j.exis.2020.12.013] [DOI:10.1016/j.exis.2020.12.013]
34. Ferreira T., Rodriguez S. (2024). Mitochondrial DNA: inherent complexities relevant to genetic analyses. Genes. 15: 617. [DOI: 10.3390/ genes15050617] [DOI:10.3390/genes15050617] [PMID] [PMCID]
35. Fosso B., Santamaria M., Marzano M., Alonso-Alemany D., Valiente G., Donvito G., Monaco A., Notarangelo P., Pesole G. (2015). BioMaS: a modular pipeline for bioinformatic analysis of metagenomic amplicons. BMC Bioinformatics. 16: 203. [DOI: 10.1186/s12859-015-0595-z] [DOI:10.1186/s12859-015-0595-z] [PMID] [PMCID]
36. Fu L., Niu B., Zhu Z., Wu S., Li W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 28: 3150-3152. [DOI: 10.1093/bioinformatics/bts565] [DOI:10.1093/bioinformatics/bts565] [PMID] [PMCID]
37. Galal-Khallaf A. (2021). Multiplex PCR and 12S rRNA gene sequencing for detection of meat adulteration: a case study in the Egyptian markets. Gene. 764: 145062. [DOI: 10.1016/j.gene.2020.145062] [DOI:10.1016/j.gene.2020.145062] [PMID]
38. Gallardo A., Choy C., Juneja J., Bozkir E., Cobb C., Bauer L., Cranor L. (2023). Speculative privacy concerns about AR glasses data collection. Proceedings on Privacy Enhancing Technologies. 2023: 416-435. [DOI: 10.56553/ popets-2023-0117] [DOI:10.56553/popets-2023-0117]
39. Garinet S., Laurent-Puig P., Blons H., Oudart J. (2018). Current and future molecular testing in NSCLC: what can we expect from new sequencing technologies? Journal of Clinical Medicine. 7: 144. [DOI: 10.3390/jcm7060144] [DOI:10.3390/jcm7060144] [PMID] [PMCID]
40. Gupta N., Verma V. (2019). Next-generation sequencing and its application: empowering in public health beyond reality. In: Arora P. (Editor). Microbial technology for the welfare of society. Springer, Singapore. pp: 313-341. [DOI: 10.1007/978-981-13-8844-6_15] [DOI:10.1007/978-981-13-8844-6_15] [PMCID]
41. Hassan N., Ahmad T., Zain N.M., Ashaari A. (2020). A novel chemometrics method for halal authentication of gelatin in food products. SainsMalaysiana. 49: 2083-2089. [DOI: 10.17576/jsm-2020-4907-08] [DOI:10.17576/jsm-2020-4907-08]
42. Hayes B., Nguyen L.T., Forutan M., Engle B.N., Lamb H.J., Copley J.P., Randhawa I.A.S., Ross E.M. (2021). An epigenetic aging clock for cattle using portable sequencing technology. Frontiers in Genetics. 18: 760450. [DOI: 10.3389/fgene. 2021.760450] [DOI:10.3389/fgene.2021.760450] [PMID] [PMCID]
43. Haynes E., Jiménez E., Pardo M.Á., Helyar S.J. (2019). The future of NGS (Next Generation Sequencing) analysis in testing food authenticity. Food Control. 101: 134-143. [DOI: 10.1016/j.foodcont. 2019.02. 010] [DOI:10.1016/j.foodcont.2019.02.010]
44. Hernández V.P., Guzmán M.H. (2023). Microorganisms identification in environmental samples: bioinformatic analysis of 16S rRNA gene with QIIME2. Ciencia Latina Revista Científica Multidisciplinar. 7: 8074-8102. [DOI: 10.37811/cl_rcm.v7i5.8382] [DOI:10.37811/cl_rcm.v7i5.8382]
45. Hidayat H.H., Wijayanti N., Situmorang S.C.D.U.B. (2023). Materials clustering of Soto Sokaraja as an effort to accelerate halal certification. IOP Conference Series: Earth and Environmental Science. 1177: 012036. [DOI: 10.1088/1755-1315/1177/ 1/012036] [DOI:10.1088/1755-1315/1177/1/012036]
46. Hook P.W., Timp W. (2023). Beyond assembly: the increasing flexibility of single-molecule sequencing technology. Nature Reviews Genetics. 24: 627-641. [DOI: 10.1038/s41576-023-00600-1] [DOI:10.1038/s41576-023-00600-1] [PMID] [PMCID]
47. Jani N.J., Chin N.K.L., Mustapha N.Z.A. (2023). Whole genome sequence analysis of a Mycobacterium iranicum, a newly identified non-tuberculosis mycobacteria, strain SBH312 isolated in Sabah, Malaysia. Borneo Journal of Medical Sciences. 17: 52-56. [DOI: 10.51200/bjms.v17i1.4291] [DOI:10.51200/bjms.v17i1.4291]
48. Jaswir I., Mirghani M.E.S., Salleh H.M., Ramli N., Octavianti F., Hendri R. (2016). An overview of the current analytical methods for halal testing. Current issues in halal food analysis. Springer, Singapore. pp: 291-300. [DOI: 10.1007/978-981-10-1452-9_27] [DOI:10.1007/978-981-10-1452-9_27]
49. Jiang L. (2023). Environmental benefits of green buildings with BIM technology. Ecological Chemistry and Engineering. 30: 191-199. [DOI: 10.1515/eces-2023-0003] [DOI:10.2478/eces-2023-0019]
50. Jovic D., Liang X., Zeng H., Lin L., Xu F., Luo Y. (2022). Single‐cell RNA sequencing technologies and applications: a brief overview. Clinical and Translational Medicine. 12: 21-35. [DOI: 10.1002/ ctm2.983] [DOI:10.1002/ctm2.694] [PMID] [PMCID]
51. Karst S.M., Ziels R.M., Kirkegaard R., Sørensen E.A., McDonald D., Zhu Q., Knight R., Albertsen M. (2021). High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nature Methods. 18: 165-169. [DOI: 10.1038/s41592-020-01041-y] [DOI:10.1038/s41592-020-01041-y] [PMID]
52. Katoh K., Rozewicki J., Yamada K.D. (2017). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics. 20: 1160-1166. [DOI: 10.1093/bib/bbx108] [DOI:10.1093/bib/bbx108] [PMID] [PMCID]
53. Kaveh S., Hashemi S.M.B., Abedi E., Amiri M.J., Conte F.L. (2023). Bio-preservation of meat and fermented meat products by lactic acid bacteria strains and their antibacterial metabolites. Sustainability. 15: 10154. [DOI: 10.3390/su151310154] [DOI:10.3390/su151310154]
54. Kayama K., Kanno M., Chisaki N., Tanaka M., Yao R., Hanazono K., Camer G.A., Endoh D. (2021). Prediction of PCR amplification from primer and template sequences using recurrent neural network. Scientific Reports. 11: 7493. [DOI: 10.1038/s41598-021-86357-1] [DOI:10.1038/s41598-021-86357-1] [PMID] [PMCID]
55. King J., Harder T., Beer M., Pohlmann A. (2020). Rapid multiplex MinION nanopore sequencing workflow for Influenza A viruses. BMC Infectious Diseases. 20: 648. [DOI: 10.1186/s12879-020-05367-y] [DOI:10.1186/s12879-020-05367-y] [PMID] [PMCID]
56. Kozich J.J., Westcott S.L., Baxter N.T., Highlander S.K., Schloss P.D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MISEQ Illumina sequencing platform. Applied and Environmental Microbiology. 79: 5112-5120. [DOI: 10.1128/aem. 01043-13] [DOI:10.1128/AEM.01043-13] [PMID] [PMCID]
57. Krisna R., Yusuf M. (2023). Halal ecosystem improvement study reviewed of halal product regulations. International Journal of Research and Review. 10: 339-353. [DOI: 10.52403/ijrr.20230243] [DOI:10.52403/ijrr.20230243]
58. Kumari P., Dong K., Eo K., Lee W., Kimura J., Yamamoto N. (2019). DNA metabarcoding-based diet survey for the Eurasian otter (Lutralutra): Development of a Eurasian otter-specific blocking oligonucleotide for 12S rRNA gene sequencing for vertebrates. PLOS ONE. 14: e0226253. [DOI: 10.1371/journal.pone.0222966] [DOI:10.1371/journal.pone.0226253] [PMID] [PMCID]
59. Liu H., Nie J., Liu Y., Wadood S.A., Rogers K.M., Yuan Y., Gan R. (2023). A review of recent compound-specific isotope analysis studies applied to food authentication. Food Chemistry. 415: 135791. [DOI: 10.1016/j.foodchem.2023.135791] [DOI:10.1016/j.foodchem.2023.135791] [PMID]
60. Liu J., Seetharam A.S., Chougule K., Ou S., Swentowsky K.W., Gent J.I., Llaca V., Woodhouse M.R., Manchanda N., Presting G.G., Kudrna D.A., Alabady M., Hirsch C.N., Fengler K.A., Ware D., Michael T.P., Hufford M.B., Dawe R.K. (2020). Gapless assembly of maize chromosomes using long-read technologies. Genome Biology. 21: 121. [DOI: 10.1186/s13059-020-02029-9] [DOI:10.1186/s13059-020-02029-9] [PMID] [PMCID]
61. Liu X., Liu Z., Cheng Y., Wu H., Shen W., Liu Y., Feng Q., Yang J. (2021). Application of next-generation sequencing technology based on single gene locus in species identification of mixed meat products. Journal of Food Quality. 2021: 4512536. [DOI: 10. 1155/2021/4512536] [DOI:10.1155/2021/4512536]
62. Lu H., Giordano F., Ning Z. (2016). Oxford NanoporeMinION sequencing and genome assembly. Genomics, Proteomics and Bioinformatics. 14: 265-279. [DOI: 10.1016/j.gpb.2016.05.004] [DOI:10.1016/j.gpb.2016.05.004] [PMID] [PMCID]
63. Lubis H., Mohd-Naim N.F., Alizul N.N., Ahmed M.U. (2016). From market to food plate: current trusted technology and innovations in halal food analysis. Trends in Food Science and Technology. 58: 55-68. [DOI: 10.1016/j.tifs.2016.10.024] [DOI:10.1016/j.tifs.2016.10.024]
64. Lücking R., Aime M.C., Robbertse B., Miller A., Ariyawansa H., Aoki T., Papp V., Robert V., Schoch C. (2020). Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus. 11: 14. [DOI: 10.1186/s43008-020-00033-9] [DOI:10.1186/s43008-020-00033-z] [PMID] [PMCID]
65. Luo J., Yan D., Zhang D., Han Y., Dong X., Yang Y., Deng K., Xiao X. (2011). Application of 12S rRNA gene for the identification of animal-derived drugs. Journal of Pharmacy and Pharmaceutical Sciences. 14: 358-367. [DOI: 10.18433/j3n017] [DOI:10.18433/J3N017] [PMID]
66. Ma X., Shao Y., Tian L., Flasch D.A., Mulder H.L., Edmonson M.N., Liu Y., Chen X., Newman S., Nakitandwe J., Li Y., Li B., Shen S., Wang Z., Shurtleff S., Robison L.L., Levy S., Easton J., Zhang J. (2019). Analysis of error profiles in deep next-generation sequencing data. Genome Biology. 20: 50. [DOI: 10.1186/s13059-019-1659-6] [DOI:10.1186/s13059-019-1659-6] [PMID] [PMCID]
67. Malaysia's Halal Food Opportunities (MIDA). (2022). Malaysia's halal food opportunities - carving out the lion's share in a USD3 trillion global market. URL: https://www.mida.gov.my/malaysias-halal-food-opportunitiescarving-out-the-lions-share-in-a-usd3-trillion-global-market/. Accessed on 5 January 2025.
68. Mathew J.L. (2023). Efficiency, economy, and excellence: experimental exploration of evidence-based guideline development in resource-constrained settings. Indian Journal of Pediatrics. 90: 700-707. [DOI: 10.1007/s12098-023-03785-1] [DOI:10.1007/s12098-023-04575-z] [PMID] [PMCID]
69. Matsunaga T., Chikuni K., Tanabe R., Muroya S., Shibata K., Yamada J., Shinmura Y. (1999). A quick and simple method for the identification of meat species and meat products by PCR assay. Meat Science. 51: 143-148. [DOI: 10.1016/s0309-1740(98)00112-0] [DOI:10.1016/S0309-1740(98)00112-0] [PMID]
70. Menzel P., Ng K.L., Krogh A. (2016). Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nature Communications. 7: 11257. [DOI: 10.1038/ncomms11257] [DOI:10.1038/ncomms11257] [PMID] [PMCID]
71. Meyer M., Kircher M. (2010). Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor Protocols. 2010: pdb.prot5448. [DOI: 10.1101/pdb.prot5448] [DOI:10.1101/pdb.prot5448] [PMID]
72. Mitchell A.L., Almeida A., Beracochea M., Boland M., Burgin J., Cochrane G., Crusoe M.R., Kale V., Potter S.C., Richardson L.J., Sakharova E., Scheremetjew M., et al. (2020). MGnify: the microbiome analysis resource in 2020. Nucleic Acids Research. 48: D570-D578. [DOI: 10.1093/nar/gkz1035] [DOI:10.1093/nar/gkz1035] [PMID] [PMCID]
73. Moorthie S., Mattocks C., Wright C.F. (2011). Review of massively parallel DNA sequencing technologies. The HUGO Journal. 5: 1-12. [DOI: 10.1007/s11568-011-9156-3] [DOI:10.1007/s11568-011-9156-3] [PMID] [PMCID]
74. Montiel-Sosa J.F., Ruiz-Pesini E., Montoya J., Roncalés P., López-Pérez M.J., Pérez-Martos A. (2000). Direct and highly species-specific detection of pork meat and fat in meat products by PCR amplification of mitochondrial DNA. Journal of Agricultural and Food Chemistry. 48: 2829-2832. [DOI: 10.1021/jf9907438] [DOI:10.1021/jf9907438] [PMID]
75. Monzel A.S., Enríquez J.A., Picard M. (2023). Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nature Metabolism. 5: 546-562. [DOI: 10.1038/s42255-023-00783-1] [DOI:10.1038/s42255-023-00783-1] [PMID] [PMCID]
76. Muflihah, Hardianto A., Kusumaningtyas P., Prabowo S., Hartati Y.W. (2023). DNA-based detection of pork content in food. Heliyon. 9: e14418. [DOI: 10.1016/j.heliyon.2023.e14418] [DOI:10.1016/j.heliyon.2023.e14418] [PMID] [PMCID]
77. Muralidharan S., Yoo B., Ko H. (2023). Decentralized ME-centric framework-a futuristic architecture for consumer IoT. IEEE Consumer Electronics Magazine. 12: 39-50. [DOI: 10.1109/ MCE. 2023.3152809] [DOI:10.1109/MCE.2022.3151023]
78. Murugaiah C., Noor Z.M., Mastakim M., Bilung L.M., Selamat J., Radu S. (2009). Meat species identification and halal authentication analysis using mitochondrial DNA. Meat Science. 83: 57-61. [DOI: 10.1016/j.meatsci.2009.03.015] [DOI:10.1016/j.meatsci.2009.03.015] [PMID]
79. Nasir S., Zulfakar M.H., Rahmat A. (2021). Determinants of preferred export logistics gateway in Malaysia halal product industry. International Journal of Academic Research in Accounting, Finance and Management Sciences. 11: 60-69. [DOI: 10.6007/IJARAFMS/v11-i4/11823] [DOI:10.6007/IJARAFMS/v11-i1/9823]
80. Neequaye G., Agyekum K., Botchway E. (2017). Market analysis of halal food consumption. International Journal of Food Science. 52: 112-124. [DOI: 10.1002/ijfs.2017.112]
81. Ng P.C., Ruslan N.A.S.A., Chin L.X., Ahmad M., Hanifah S.A., Abdullah Z., Khor S.M. (2021). Recent advances in halal food authentication: challenges and strategies. Journal of Food Science. 87: 8-35. [DOI: 10.1111/1750-3841.15998] [DOI:10.1111/1750-3841.15998] [PMID]
82. Nichols B., Quince C. (2016). Simera: modelling the PCR process to simulate realistic chimera formation. bioRxiv. [DOI: 10.1101/072447] [DOI:10.1101/072447]
83. Nicolae C., Moga L., Bahaciu G., Marin M. (2017). Traceability system structure design for fish and fish products based on supply chain actors' needs. Food Control. 73: 189-200. [DOI: 10.1016/j.foodcont. 2016.10.032]
84. Noakes M.T., Brinkerhoff H., Laszlo A.H., Derrington I.M., Langford K.W., Mount J.W., Bowman J.L., Baker K., Doering K., Tickman B.I., Gundlach J.H. (2019). Increasing the accuracy of nanopore DNA sequencing using a time-varying cross membrane voltage. Nature Biotechnology. 37: 651-656. [DOI: 10.1038/s41587-019-0096-0] [DOI:10.1038/s41587-019-0096-0] [PMID] [PMCID]
85. Noor N.M., Azmi N.A.N., Hanifah N.A., Zamarudin Z. (2023). Navigating the halal food ingredients industry: exploring the present landscape. Halalpshere. 3: 32-43. [DOI: 10.31436/ hs.v3i2.80] [DOI:10.31436/hs.v3i2.80]
86. Nuraini H., Primasari A., Andreas E., Sumantri C. (2012). The use of Cytochrome b gene as a specific marker of the rat meat (Rattusnorvegicus) on meat and meat products. Media Peternakan. 35: 15-20. [DOI: 10.5398/medpet.2012.35.1.15] [DOI:10.5398/medpet.2012.35.1.15]
87. Oehler J.B., Wright H., Stark Z., Mallett A., Schmitz U. (2023). The application of long-read sequencing in clinical settings. Human Genomics. 17: 92. [DOI: 10.1186/s40246-023-00522-3] [DOI:10.1186/s40246-023-00522-3] [PMID] [PMCID]
88. Oktavia L., Marwa T., Yulianita A. (2019). Analysis of factors affecting millennial consumers' demand for halal bread products. MIR (Modernization Innovation Research). 10: 395-407. [DOI: 10.18184/2079-4665.2019.10.3.395-407] [DOI:10.18184/2079-4665.2019.10.3.395-407]
89. Ounit R., Wanamaker S., Close T.J., Lonardi S. (2015). CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC Genomics. 16: 236. [DOI: 10.1186/s12864-015-1419-2] [DOI:10.1186/s12864-015-1419-2] [PMID] [PMCID]
90. Pandey P.K., Dhotre D.P., Dharne M.S., Khadse A.N., Hiremath U.I., Chaudhari R.D., Patole M.S., Shouche Y.S. (2007). Evaluation of mitochondrial 12S rRNA gene in the identification of Panterapardusfusca (Meyer, 1794) from field-collected scat samples in Western Ghats, Maharashtra, India. Current Science. 92: 1129-1133.
91. Pang Z., Zhou G., Ewald J., Chang L., Haçarız O., Basu N., Xia J. (2022). Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration, and covariate adjustment of global metabolomics data. Nature Protocols. 17: 1735-1761. [DOI: 10.1038/s41596-022-00715-4] [DOI:10.1038/s41596-022-00710-w] [PMID]
92. Pillay S., De Vos M., Derendinger B., Streicher E.M., Dolby T., Scott L.A., Steinhobel A.D., Warren R.M., Theron G. (2022). Non-actionable results, accuracy, and effect of first- and second-line line probe assays for diagnosing drug-resistant tuberculosis, including on smear-negative specimens, in a high-volume laboratory. Clinical Infectious Diseases. 76: e920-e929. [DOI: 10.1093/cid/ciac556] [DOI:10.1093/cid/ciac556] [PMID] [PMCID]
93. Prakrongrak N., Boonsoong B., Monthatong M. (2023). Genetic diversity and phylogenetic analysis of mayfly Caenis (Insecta: Ephemeroptera) using Cytochrome C Oxidase I (COI) and 12s rRNA genes from Thailand. Biodiversitas Journal of Biological Diversity. 24: 1942-1952. [DOI: 10.13057/biodiv/ d240407] [DOI:10.13057/biodiv/d240407]
94. Rahman M.M., Ahmad Z., Mustafa S. (2023). DNA-based platform for halal authentication and combat food threat. Journal of Halal Industry and Services. [DOI: 10.36877/jhis.a0000407] [DOI:10.36877/jhis.a0000407]
95. Reuter J., Spacek D.V., Snyder M. (2015).High-throughput sequencing technologies. Molecular Cell. 58: 586-597. [DOI: 10.1016/j.molcel.2015.05.004] [DOI:10.1016/j.molcel.2015.05.004] [PMID] [PMCID]
96. Rhoads A., Au K.F. (2015). PacBio sequencing and its applications. Genomics, Proteomics and Bioinformatics. 13: 278-289. [DOI: 10.1016/j.gpb. 2015.08.002] [DOI:10.1016/j.gpb.2015.08.002] [PMID] [PMCID]
97. Ripp F., Krombholz C.F., Liu Y., Weber M., Schäfer A., Schmidt B., Köppel R., Hankeln T. (2014). All-Food-Seq (AFS): a quantifiable screen for species in biological samples by deep DNA sequencing. BMC Genomics. 15: 639. [DOI: 10.1186/1471-2164-15-639] [DOI:10.1186/1471-2164-15-639] [PMID] [PMCID]
98. Rohman A., Orbayinah S., Hermawan A., Sudjadi S., Windarsih A., Handayani S. (2022). The development of real-time polymerase chain reaction for identification of beef meatball. Applied Food Research. 2: 100148. [DOI: 10.1016/j.afres.2022.100148] [DOI:10.1016/j.afres.2022.100148]
99. Roy D., Akhter S., Sarker A., Hossain M., Lyzu C., Mohanta L., Islam D., Khan M. (2022). Tracing the pig and cattle origin in processed food and feed products targeting mitochondrial 12S rRNA gene. Journal of Food Quality and Hazards Control. 9: 163-171. [DOI: 10.18502/jfqhc.8.4.8256] [DOI:10.18502/jfqhc.8.4.8256]
100. Sahilah A.M., Norhayati Y., Norrakiah A.S., Aminah A., Wan Aida W.M. (2011). Halal authentication of raw meats using PCR amplification of mitochondrial DNA. International Food Research Journal. 18: 1489-1491.
101. Sajali N., Wong S.C., Bakar S.A., Mokhtar N.F.K., Manaf Y.N.A., Yuswan M.H., Desa M.N.M. (2020). Analytical approaches of meat authentication in food. International Journal of Food Science and Technology. 56: 1535-1543. [DOI: 10.1111/ ijfs.14797] [DOI:10.1111/ijfs.14797]
102. Sanjaya U.H., Arabella R. (2023). Legal protection of consumer data on e-commerce platforms with cash on delivery (COD) systems. KnE Social Sciences. 8: 20-32. [DOI: 10.18502/kss.v8i1.10869]
103. Satam H., Joshi K., Mangrolia U., Waghoo S., Zaidi G., Rawool S., Thakare R.P., Banday S., Mishra A., Das G., Malonia S.K. (2023). Next-generation sequencing technology: current trends and advancements. Biology.12: 997. [DOI: 10.3390/biology12070997] [DOI:10.3390/biology12070997] [PMID] [PMCID]
104. Schloss P.D., Gevers D., Westcott S.L. (2011). Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLOS ONE. 6: e27310. [DOI: 10.1371/journal.pone.0027310] [DOI:10.1371/journal.pone.0027310] [PMID] [PMCID]
105. Sedlazeck F.J., Rescheneder P., Smolka M., Han F., Nattestad M., Von Haeseler A., Schatz M.C. (2018).Accurate detection of complex structural variations using single-molecule sequencing. Nature Methods. 15: 461-468. [DOI: 10.1038/s41592-018-0001-7] [DOI:10.1038/s41592-018-0001-7] [PMID] [PMCID]
106. Segata N., Waldron L., Ballarini A., Narasimhan V., Jousson O., Huttenhower C. (2012). Metagenomic microbial community profiling using unique clade-specific marker genes. Nature Methods. 9: 811-814. [DOI: 10.1038/nmeth.2066] [DOI:10.1038/nmeth.2066] [PMID] [PMCID]
107. Shaharuddin F.Z., Norman A.A., Hamid S., Zakaria Z. (2025). Halal food industry in Malaysia: issues and challenges. Food Research. 9: 33-42. [DOI: 10.26656/fr.2017.9(s2).072] [DOI:10.26656/fr.2017.9(S2).072]
108. Shen W., Song Z., Zhong X., Huang M., Shen D., Gao P., Qian X., Wang M., He X., Wang T., Li S., Song X. (2022). Sangerbox: a comprehensive, interaction‐friendly clinical bioinformatics analysis platform. iMeta. 1: 15. [DOI: 10.1002/imt2.15] [DOI:10.1002/imt2.15] [PMID] [PMCID]
109. Shirazi S., Meyer R.S., Shapiro B. (2021). Revisiting the effect of PCR replication and sequencing depth on biodiversity metrics in environmental DNA metabarcoding. Ecology and Evolution. 11: 15766-15779. [DOI: 10.1002/ece3.8239] [DOI:10.1002/ece3.8239] [PMID] [PMCID]
110. Slatko B.E., Gardner A.F., Ausubel F.M. (2018).Overview of next-generation sequencing technologies. Current Protocols in Molecular Biology. 122: e59. [DOI: 10.1002/cpmb.59] [DOI:10.1002/cpmb.59] [PMID] [PMCID]
111. Sun K., Liu Y., Zhou X., Yin C., Zhang P., Yang Q., Mao L., Shentu X., Yu X. (2022). Nanopore sequencing technology and its application in plant virus diagnostics. Frontiers in Microbiology. 13: 939666. [DOI: 10.3389/fmicb.2022.939666] [DOI:10.3389/fmicb.2022.939666] [PMID] [PMCID]
112. Taber K.S. (2017). The use of Cronbach's Alpha when developing and reporting research instruments in science education. Research in Science Education. 48: 1273-1296. [DOI: 10.1007/s11165-016-9602-2] [DOI:10.1007/s11165-016-9602-2]
113. Talib M.S.A., Zulfakar M.H. (2023). Sustainable halal food supply chain management in a small rentier halal market. Arab Gulf Journal of Scientific Research. 41: 61-72. [DOI: 10.1108/agjsr-11-2022-0251] [DOI:10.1108/AGJSR-11-2022-0251]
114. Teng J.L.L., Yeung M.L., Chan E., Jia L., Lin C.H., Huang Y., Tse H., Wong S.S.Y., Sham P.C., Lau S.K.P., Woo P.C.Y. (2017). PacBio but not Illumina technology can achieve fast, accurate and complete closure of the high GC, complex Burkholderiapseudomallei two-chromosome genome. Frontiers in Microbiology. 8: 1448. [DOI: 10.3389/fmicb.2017.01448] [DOI:10.3389/fmicb.2017.01448] [PMID] [PMCID]
115. Thomas G.W.C., Hahn M.W. (2019). Referee: reference assembly quality scores. Genome Biology and Evolution. 11: 1483-1486. [DOI: 10.1093/ gbe/evz088] [DOI:10.1093/gbe/evz088] [PMID] [PMCID]
116. Tyler A.D., Mataseje L., Urfano C., Schmidt L., Antonation K., Mulvey M.R., Corbett C.R. (2018). Evaluation of Oxford Nanopore'sMinION sequencing device for microbial whole genome sequencing applications. Scientific Reports. 8: 10931. [DOI: 10.1038/s41598-018-29334-5] [DOI:10.1038/s41598-018-29334-5] [PMID] [PMCID]
117. Udaondo Z., Sittikankaew K., Uengwetwanit T., Wongsurawat T., Sonthirod C., Jenjaroenpun P., Pootakham W., Karoonuthaisiri N., Nookaew I. (2021). Comparative analysis of PacBio and Oxford Nanopore sequencing technologies for transcriptomic landscape identification of Penaeusmonodon. Life. 11: 862. [DOI: 10.3390/life11080862] [DOI:10.3390/life11080862] [PMID] [PMCID]
118. Uliano-Silva M., Ferreira J.G.R.N., Krasheninnikova K., Blaxter M., Mieszkowska N., Hall N., Holland P., Durbin R., Richards T., Kersey P., Hollingsworth P., Wilson W., Twyford A., Gaya E., Lawniczak M., Lewis O., Broad G., Martin F., Hart M., McCarthy S.A. (2023). MitoHiFi: a python pipeline for mitochondrial genome assembly from PacBio high fidelity reads. BMC Bioinformatics. 24: 288. [DOI: 10.1186/s12859-023-05385-y] [DOI:10.1186/s12859-023-05385-y] [PMID] [PMCID]
119. Van Der Spiegel M., Van Der Fels-Klerx H., Sterrenburg P., Van Ruth S.M., Scholtens-Toma I., Kok E. (2012). Halal assurance in food supply chains: verification of halal certificates using audits and laboratory analysis. Trends in Food Science and Technology. 27: 109-119. [DOI: 10.1016/j.tifs.2012.04.005] [DOI:10.1016/j.tifs.2012.04.005]
120. Venkatas J., Adeleke M.A. (2019). Emerging threat of Eimeria operational taxonomic units (OTUs) on poultry production. Parasitology. 146: 1615-1619. [DOI: 10.1017/s0031182019001100] [DOI:10.1017/S0031182019001100] [PMID]
121. Wang H., Chen Y., Wang L., Liu Q., Yang S., Wang C. (2023). Advancing herbal medicine: enhancing product quality and safety through robust quality control practices. Frontiers in Pharmacology. 14: 1265178. [DOI: 10.3389/fphar.2023.1263813] [DOI:10.3389/fphar.2023.1265178] [PMID] [PMCID]
122. Wang X., Cai Y., Sun Y., Knight R., Mai V. (2011). Secondary structure information does not improve OTU assignment for partial 16S rRNA sequences. The ISME Journal. 6: 1277-1280. [DOI: 10.1038/ismej.2011.187] [DOI:10.1038/ismej.2011.187] [PMID] [PMCID]
123. Wasswa F.B., Kassaza K., Nielsen K., Bazira J. (2022). MinION whole-genome sequencing in resource-limited settings: challenges and opportunities. Current Clinical Microbiology Reports. 9: 52-59. [DOI: 10.1007/s40588-022-00183-1] [DOI:10.1007/s40588-022-00183-1] [PMID] [PMCID]
124. Wenger A., Peluso P., Rowell W., Chang P.C., Hall R., Concepcion G., Hunkapiller M. (2019). Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nature Biotechnology. 37: 1155-1162. [DOI: 10.1038/s41587-019-0217-9] [DOI:10.1038/s41587-019-0217-9] [PMID] [PMCID]
125. Wick R.R., Judd L.M., Holt K.E. (2023). Assembling the perfect bacterial genome using Oxford Nanopore and Illumina sequencing. PLOS Computational Biology. 19: e1010905. [DOI: 10.1371/journal.pcbi.1010905] [DOI:10.1371/journal.pcbi.1010905] [PMID] [PMCID]
126. Woltyńska A., Gawor J., Olech M.A., Górniak D., Grzesiak J. (2023). Bacterial communities of Antarctic lichens explored by gDNA and cDNA 16S rRNA gene amplicon sequencing. FEMS Microbiology Ecology. 99: fiad015. [DOI: 10.1093/femsec/fiad015] [DOI:10.1093/femsec/fiad015] [PMID] [PMCID]
127. Woo C., Kumari P., Eo K., Lee W., Kimura J., Yamamoto N. (2023). Combining vertebrate mitochondrial 12S rRNA gene sequencing and shotgun metagenomic sequencing to investigate the diet of the leopard cat (Prionailurusbengalensis) in Korea. PLOS ONE. 18: e0278941. [DOI: 10.1371/journal.pone.0278941] [DOI:10.1371/journal.pone.0278941] [PMID] [PMCID]
128. Wood D.E., Lu J., Langmead B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology. 20: 257. [DOI: 10.1186/s13059-019-1891-0] [DOI:10.1186/s13059-019-1891-0] [PMID] [PMCID]
129. Yakin A.U. (2021). Halal certification, standards, and their ramifications in Belgium. Islamic Studies Journal. 27: 45-59. [DOI: 10.1163/9789004459236_ 008] [DOI:10.1163/9789004459236_008]
130. Yang Y., Xie B., Yan J. (2014). Application of next-generation sequencing technology in forensic science. Genomics, Proteomics and Bioinformatics. 12: 190-197. [DOI: 10.1016/j.gpb.2014.09.001] [DOI:10.1016/j.gpb.2014.09.001] [PMID] [PMCID]
131. Yang L., Tan Z., Wang D., Xue L. Guan M., Huang T., Li R. (2014). Species identification through mitochondrial rRNA genetic analysis. Scientific Reports. 4: 4089. [DOI: 10.1038/srep04089] [DOI:10.1038/srep04089] [PMID] [PMCID]
132. Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. (2012). Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics.13: 134. [DOI: 10.1186/ 1471-2105-13-134] [DOI:10.1186/1471-2105-13-134] [PMID] [PMCID]
133. Zhang Y., Qu Q., Mingzhen R., Nana Z., Zhao Y., Tao F. (2020). Simultaneous identification of animal-derived components in meats using high-throughput sequencing in combination with a custom-built mitochondrial genome database. Scientific Reports.10: 8965. [DOI: 10.1038/s41598-020-65724-4] [DOI:10.1038/s41598-020-65724-4] [PMID] [PMCID]
134. Zhou W., Liu X., Lv M., Shi Y., Zhang L. (2023). The recognition mode between hsRBFA and mitoribosome 12S rRNA during mitoribosomal biogenesis. Nucleic Acids Research. 51: 1353-1363. [DOI: 10.1093/ nar/gkac1234] [DOI:10.1093/nar/gkac1234]
135. Zou A., Phan L., Chen S., Campbell J., Guo P., Ren R., Hendrycks D. (2023). Representation engineering: a top-down approach to AI transparency. arXiv. [DOI: 10.48550/arXiv.2301.01912] [DOI:10.48550/arXiv.2301.01912]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb