Volume 12, Issue 4 (December 2025)                   J. Food Qual. Hazards Control 2025, 12(4): 293-300 | Back to browse issues page

Ethics code: Not applicable


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Putri N, Darmasiwi S. Characterization of Bacteriocin-like Inhibitory Substances from Lactic Acid Bacteria Isolated during Spontaneous Fermentation of Shimeji Mushrooms (Hypsizygus sp.). J. Food Qual. Hazards Control 2025; 12 (4) :293-300
URL: http://jfqhc.ssu.ac.ir/article-1-1378-en.html
Faculty of Biology, Universitas Gadjah Mada, Jl Teknika Selatan, Sekip Utara Yogyakarta 52281, Indonesia , saridarma@ugm.ac.id
Abstract:   (82 Views)
Background: Spontaneous is an effective method to enhance the bioactivity and stability of foods through the action of Lactic Acid Bacteria (LAB), the dominant microbes in this fermentation which generate antimicrobial metabolites, while also serving as a form of biological preservation. Hypsizygus sp., an edible mushroom valued for its high nutritional value, is highly perisable and benefits from biological preservation strategies. This study investigated LAB isolated from spontaneous fermentation of Hypsizygus sp. and characterized their bacteriocin-like inhibitory activity.
Methods: Spontaneous fermentation was performed on Hypsizygus sp. using 2% NaCl, 1% sucrose, 3% chili pepper, and 2% garlic then incubated for 6 days at 27±1 °C. LAB were isolated on days 0, 2nd, 4th, and 6th using de Man, Rogosa, and Sharpe agar (MRSA) medium, and characterized through colony and cell morphology, catalase activity, carbohydrate fermentation, and tolerance to salt and temperature. Bacteriocin-like inhibitory substances activity and stability were evaluated for antibacterial activity and stability across temperature, pH, and proteolytic enzyme treatment. Statistical analysis used two-way ANOVA followed by Sidak’s post-hoc test (p<0.05).
Results: Four isolates exhibited promising traits, with ISL-2A and ISL-4G—identified as belonging to the genus Lactobacillus—demonstrating the highest antibacterial activity against Staphylococcus aureus and Escherichia coli. The bacteriocin-like inhibitory substances produced were stable across a pH range of 3.0–7.0 and temperatures up to
80 °C, but were inactivated by proteolytic enzyme.

Conclusion: These findings underscore the potential of LABs derived from fermented Hypsizygus sp. as natural antimicrobials and biopreservatives for food.

DOI: 10.18502/jfqhc.12.4.20407
Full-Text [PDF 608 kb]   (42 Downloads)    
Type of Study: Original article | Subject: Special
Received: 25/06/09 | Accepted: 25/12/02 | Published: 25/12/21

References
1. Ahmad V., Khan M.S., Jamal Q.M.S., Alzohairy M.A., Al Karaawi M.A., Siddiqui M.U. (2017). Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. International Journal of Antimicrobial Agents. 49: 1-11. [DOI: 10.1016/j.ijantimicag.2016.08.016] [DOI:10.1016/j.ijantimicag.2016.08.016] [PMID]
2. Baek Y.C., Kim M.S., Reddy K.E., Oh Y.K., Jung Y.H., Yeo J.M., Choi H. (2017). Rumen fermentation and digestibility of spent mushroom (Pleurotus ostreatus) substrate inoculated with Lactobacillus brevis for Hanwoo steers. Revista Colombiana de Ciencias Pecuarias. 30: 267-277. [DOI: 10.17533/udea.rccp.v30n4a02]. [DOI:10.17533/udea.rccp.v30n4a02]
3. Chen Y.S., Yanagida F., Hsu J.S. (2006). Isolation and characterization of lactic acid bacteria from dochi (fermented black beans), a traditional fermented food in Taiwan. Letters in Applied Microbiology. 43: 229-235. [DOI: 10.1111/j.1472-765X.2006.01922.x] [DOI:10.1111/j.1472-765X.2006.01922.x] [PMID]
4. Chowdhury M., Kubra K., Ahmed S. (2015). Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh. Annals of Clinical Microbiology and Antimicrobials. 14: 8. [DOI: 10.1186/s12941-015-0073-7] [DOI:10.1186/s12941-015-0067-3] [PMID] [PMCID]
5. Cotter P.D., Ross R.P., Hill C. (2013). Bacteriocins: a viable alternative to antibiotics? Nature Reviews Microbiology. 11: 95-105. [DOI: 10.1038/nrmicro2937] [DOI:10.1038/nrmicro2937] [PMID]
6. Dahunsi A.T., Dahunsi S.O., Ajayeoba T.A. (2022). Co-occurrence of Lactobacillus species during fermentation of African indigenous foods: impact on food safety and shelf life extension. Frontiers in Microbiology. 13: 684730. [DOI: 10.3389/fmicb.2022.684730] [DOI:10.3389/fmicb.2022.684730] [PMID] [PMCID]
7. Eghbal N., Liao W., Dumas E., Azabou S., Dantigny P., Gharsallaoui A. (2022). Microencapsulation of natural food antimicrobials: methods and applications. Applied Sciences (Switzerland). 12: 83837. [DOI: 10.3390/app12083837] [DOI:10.3390/app12083837]
8. Goa T., Beyene G., Mekonnen M., Gorems K. (2022). Isolation and characterization of lactic acid bacteria from fermented milk produced in Jimma Town, Southwest Ethiopia, and evaluation of their antimicrobial activity against selected pathogenic bacteria. International Journal of Food Science. 2022: 2076021. [DOI: 10.1155/2022/2076021] [DOI:10.1155/2022/2076021] [PMID] [PMCID]
9. Guerra N.P. (2014). Modeling the batch bacteriocin production system by lactic acid bacteria by using modified three-dimensional Lotka-Volterra equations. Biochemical Engineering Journal. 88: 115-130. [DOI: 10.1016/j.bej.2014.04.010] [DOI:10.1016/j.bej.2014.04.010]
10. Héchard Y., Sahl H.G. (2002). Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie. 84: 545-557. [DOI: 10.1016/S0300-9084(02)01400-1] [DOI:10.1016/S0300-9084(02)01400-1] [PMID]
11. Hou M., Wang Z., Sun L., Jia Y., Wang S., Cai Y. (2023). Characteristics of lactic acid bacteria, microbial community and fermentation dynamics of native grass silage prepared in Inner Mongolian Plateau. Frontiers in Microbiology. 13: 1072140. [DOI: 10.3389/fmicb.2022.1072140] [DOI:10.3389/fmicb.2022.1072140] [PMID] [PMCID]
12. Jabłońska-Ryś E., Skrzypczak K., Sławińska A., Radzki W., Gustaw W. (2019). Lactic acid fermentation of edible mushrooms: tradition, technology, current state of research: a review. Comprehensive Reviews in Food Science and Food Safety. 18: 655-669. [DOI: 10.1111/1541-4337.12437] [DOI:10.1111/1541-4337.12437] [PMID]
13. Leska A., Nowak A., Motyl I. (2022). Isolation and some basic characteristics of lactic acid bacteria from honeybee (Apis mellifera L.) environment-a preliminary study. Agriculture. 12: 1562. [DOI: 10.3390/agriculture12101562] [DOI:10.3390/agriculture12101562]
14. Li Q., Kang J., Ma Z., Li X., Liu L., Hu X. (2017). Microbial succession and metabolite changes during traditional serofluid dish fermentation. LWT-Food Science and Technology. 84: 771-779. [DOI: 10.1016/j.lwt.2017.06.046] [DOI:10.1016/j.lwt.2017.06.046]
15. Malik E., Dennison S.R., Harris F., Phoenix D.A. (2016). pH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents. Pharmaceuticals (Basel). 9: 67. [DOI: 10.3390/ph9040067] [DOI:10.3390/ph9040067] [PMID] [PMCID]
16. Maskuri H.A., Aramsirirujiwet Y., Kimkong I., Darmasiwi S. (2025). Biopreservation potential of shimeji (Hypsizygus sp.) mushroom fermented with Bifidobacterium sp. InaCC B723. Biosaintifika: Journal of Biology and Biology Education. 17: 169-178. [DOI: 10.15294/biosaintifika.v17i1.4964] [DOI:10.15294/biosaintifika.v17i1.4964]
17. McDonald L.C., Fleming H.P., Hassan, H.M. (1990). Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Applied and Environmental Microbiology. 56: 2120-2124. [DOI: 10.1128/aem.56.7.2120-2124.1990] [DOI:10.1128/aem.56.7.2120-2124.1990] [PMID] [PMCID]
18. Mokoena M.P. (2017). Lactic acid bacteria and their bacteriocins: classification, biosynthesis, and applications against uropathogens: a minireview. Molecules. 22: 1255. [DOI: 10.3390/molecules22081255] [DOI:10.3390/molecules22081255] [PMID] [PMCID]
19. Monira S., Haque A., Muhit M., Sarker N.C., Alam A., Rahman A., Khondkar P. (2012). Antimicrobial, antioxidant and cytotoxic properties of Hypsizygus tessulatus cultivated in Bangladesh. Research Journal of Medicinal Plants. 6: 300-308. [DOI: 10.3923/rjmp.2012.300.308] [DOI:10.3923/rjmp.2012.300.308]
20. Mótyán J., Tóth F., Tőzsér J. (2013). Research applications of proteolytic enzymes in molecular biology. Biomolecules. 3: 923-942. [DOI: 10.3390/biom3040923] [DOI:10.3390/biom3040923] [PMID] [PMCID]
21. Pérez-Ramos A., Madi-Moussa D., Coucheney F., Drider D. (2021). Current knowledge of the mode of action and immunity mechanisms of LAB bacteriocins. Microorganisms. 9: 2107. [DOI: 10.3390/microorganisms9102107] [DOI:10.3390/microorganisms9102107] [PMID] [PMCID]
22. Sharma B.R., Halami P.M., Tamang J.P. (2022). Novel pathways in bacteriocin synthesis by lactic acid bacteria with special reference to ethnic fermented foods. Food Science and Biotechnology. 31: 1-16. [DOI: 10.1007/s10068-021-00986-w] [DOI:10.1007/s10068-021-00986-w] [PMID] [PMCID]
23. Sidooski T., Brandelli A., Bertoli S.L., Souza C.K. de, Carvalho L.F. de. (2019). Physical and nutritional conditions for optimized production of bacteriocins by lactic acid bacteria-a review. Critical Reviews in Food Science and Nutrition. 59: 2839-2849. [DOI: 10.1080/10408398.2018.1474852] [DOI:10.1080/10408398.2018.1474852] [PMID]
24. Soorsesh M., Willing B.P., Bourrie B.C. (2023). Opportunities and challenges of understanding community assembly in spontaneous food fermentation. Foods. 12: 673. [DOI: 10.3390/foods12030673] [DOI:10.3390/foods12030673] [PMID] [PMCID]
25. Skrzypczak K., Gustaw K., Jabłońska E., Sławińska A., Gustaw W., Winiarczyk S. (2020). Spontaneously fermented fruiting bodies of Agaricus bisporus as a valuable source of new isolates of lactic acid bacteria with functional potential. Foods. 9: 1631. [DOI: 10.3390/foods9111569] [DOI:10.3390/foods9111569] [PMID] [PMCID]
26. Szutowska J., Gwiazdowska D. (2021). Probiotic potential of lactic acid bacteria obtained from fermented curly kale juice. Archives of Microbiology. 203: 975-988. [DOI: 10.1007/s00203-020-02063-3] [DOI:10.1007/s00203-020-02095-4] [PMID] [PMCID]
27. Tamang J.P., Shin D.H., Jung S.J., Chae S.W. (2016). Functional properties of microorganisms in fermented foods. Food Microbiology. 57: 578-590. [DOI: 10.1016/j.fm.2016.02.001] [DOI:10.1016/j.fm.2016.02.001] [PMID]
28. Udhayashree N., Senbagam D., Senthilkumar B., Nithya K., Gurusamy R. (2012). Production of bacteriocins and their application in food products. Asian Pacific Journal of Tropical Biomedicine. 2: S406-S410. [DOI: 10.1016/S2221-1691(12)60215-3] [DOI:10.1016/S2221-1691(12)60197-X]
29. Veettil V.N., Chitra V. (2022). Optimization of bacteriocin production by Lactobacillus plantarum using response surface methodology. Cellular and Molecular Biology. 68: 105-110. [DOI: 10.14715/cmb/2022.68.6.16] [DOI:10.14715/cmb/2022.68.6.16] [PMID]
30. Winurati A.K., Darmasiwi S. (2025). Microbiological and chemical profiling of lactofermented shimeji mushroom (Hypsizygus sp.) pickle juice using Lactobacillus bulgaricus as a starter culture. Journal of Microbiology, Biotechnology and Food Sciences. 14: 11136. [DOI: 10.55251/jmbfs.11136] [DOI:10.55251/jmbfs.11136]
31. Wu D., Dai M., Shi Y., Zhou Q., Li P., Gu Q. (2022). Purification and characterization of bacteriocin produced by a strain of Lacticaseibacillus rhamnosus ZFM216. Frontiers in Microbiology. 13: 1041369. [DOI: 10.3389/fmicb.2022.1050807] [DOI:10.3389/fmicb.2022.1050807] [PMID] [PMCID]
32. Zacharof M.P., Lovitt R.W. (2012). Bacteriocins produced by lactic acid bacteria: a review article. APCBEE Procedia. 2: 50-56. [DOI: 10.3389/fmicb.2022.1041369] [DOI:10.1016/j.apcbee.2012.06.010]
33. Wei G., Wang D., Wang T., Wang G., Chai Y., Li Y., Mei M., Wang H., Huang A. (2025). Probiotic potential and safety properties of Limosilactobacillus fermentum A51 with high exopolysaccharide production. Frontiers in Microbiology. 16: 1498352. [DOI: 10.3389/fmicb.2025.1498352] [DOI:10.3389/fmicb.2025.1498352] [PMID] [PMCID]
34. Zabat M.A., Sano W.H., Wurster J.I., Cabral D.J., Belenky P. (2018). Microbial community analysis of sauerkraut fermentation reveals a stable and rapidly established community. Foods. 7: 77. [DOI: 10.3390/foods7050077] [DOI:10.3390/foods7050077] [PMID] [PMCID]
35. Zielińska D., Kolozyn-Krajewska D., Laranjo M. (2018). Food-origin lactic acid bacteria may exhibit probiotic properties: a review. BioMed Research International. 2018: 5063185. [DOI: 10.1155/2018/5063185] [DOI:10.1155/2018/5063185] [PMID] [PMCID]
36. Zimmerman T., Ibrahim S.A. (2021). Autolysis and cell death is affected by pH in Lactobacillus reuteri DSM 20016 cells. Foods. 10: 1026. [DOI: 10.3390/foods10051026] [DOI:10.3390/foods10051026] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb