Volume 6, Issue 1 (March 2019)                   J. Food Qual. Hazards Control 2019, 6(1): 8-15 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Al-taghlubee D, Misaghi A, Shayan P, Akhondzadeh Basti A, Gandomi H, Shayan D. Comparison of Two Multiplex PCR Systems for Meat Species Authentication . J. Food Qual. Hazards Control 2019; 6 (1) :8-15
URL: http://jfqhc.ssu.ac.ir/article-1-513-en.html
Department of Pathophysiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran , pshayan@ut.ac.ir
Abstract:   (2732 Views)
Background: Meat species adulteration has become a problem of concern. This study aimed to compare two previously published multiplex Polymerase Chain Reaction (PCR) methods for meat species authentication. 
Methods: The primers used in the first multiplex PCR involved species-specific reverse primer for sheep, goat, cattle, pig, and donkey with universal forward primer. In the second multiplex PCR, the primers included species-specific forward and reverse primer for pork, lamb, ostrich, horse, and cow. The extracted DNA was then amplified with species-specific primers and with mix primers separately in the respective multiplex PCR.
Results: The first multiplex PCR was accompanied with cross reactivity, whereas the second multiplex PCR was specific as expected for pork, lamb, ostrich, horse, and cow. The first set of multiplex PCR showed not always amplification of all species-specific DNAs with a mixture of DNA from mentioned animals. Regarding the second set of primers, the extracted DNA of different meat species was amplified with corresponding species primers as simplex PCR resulting in specific amplicons for species DNA prepared from sheep, ostrich, horse, pig, and cattle with the specific PCR products of 119, 155, 253, 100, and 311 bp, respectively.
Conclusion: Based on the present investigation, we recommend the multiplex PCR with the second set of primers included species-specific forward and reverse primers for species authentication of five meat types, including pork, lamb, ostrich, horse, as well as cow.


DOI: 10.18502/jfqhc.6.1.453
Full-Text [PDF 764 kb]   (1359 Downloads)    
Type of Study: Original article | Subject: Special
Received: 18/03/21 | Accepted: 18/06/30 | Published: 19/03/08

References
1. Ali M.E., Razzak M.A., Hamid S.B.A. (2014). Multiplex PCR in species authentication: probability and prospects-a review. Food Analytical Methods. 7: 1933-1949. [DOI: 10.1007/ s12161-014-9844-4] [DOI:10.1007/s12161-014-9844-4]
2. Armstrong S.G., Leach D.N., Wyllie S.G. (1992). The use of HPLC protein profiles in fish species identification. Food Chemistry. 44: 147-155. [DOI: 10.1016/0308-8146(92)90328-Y] [DOI:10.1016/0308-8146(92)90328-Y]
3. Cai Y., He Y., Lv R., Chen H., Wang Q., Pan L. (2017). Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR. PloS One. 12: e0181949. [DOI: 10.1371/journal.pone.0181949] [DOI:10.1371/journal.pone.0181949]
4. Di Pinto A., Bottaro M., Bonerba E., Bozzo G., Ceci E., Marchetti P., Mottola A., Tantillo G. (2015). Occurrence of mislabeling in meat products using DNA-based assay. Journal of Food Science and Technology. 52: 2479-2484. [DOI: 10.1007/ s13197-014-1552-y] [DOI:10.1007/s13197-014-1552-y] [PMID] [PMCID]
5. Doosti A., Ghasemi Dehkordi P., Rahimi E. (2014). Molecular assay to fraud identification of meat products. Journal of Food Science and Technology. 51: 148-152. [DOI: 10.1007/s13197-011-0456-3] [DOI:10.1007/s13197-011-0456-3]
6. Edris S., Mutwakil M.H.Z., Abuzinadah O.A., Mohammed H.E., Ramadan A., Gadalla N.O., Shokry A.M., Hassan S.M., Shoaib R.M., El-Domyati F.M., Bahieldin A. (2012). Conventional multiplex polymerase chain reaction (PCR) versus real-time PCR for species-specific meat authentication. Life Science Journal. 9: 5831-5837.
7. Eslami G., Hajimohammadi B., Moghadam Ahmadi M., Dehghani A., Zandi H., Hoseinpour Ganjaroudi F., Khalatbari S. (2014). Molecular assay for fraud identification of handmade hamburgers. International Journal of Enteric Pathogens. 2: 1-3. [DOI: 10.17795/ijep21152] [DOI:10.17795/ijep21152]
8. Gil L.A. (2007). PCR-based methods for fish and fishery products authentication. Trends in Food Science and Technology. 18: 558-566. [DOI: 10.1016/j.tifs.2007.04.016] [DOI:10.1016/j.tifs.2007.04.016]
9. Girish P.S., Anjaneyulu A.S.R., Viswas K.N., Anand M., Rajkumar N., Shivakumar B..M, Bhaskar S. (2004). Sequence analysis of mitochondrial 12S rRNA gene can identify meat species. Meat Science. 66: 551-556. [DOI: 10.1016/S0309-1740(03)00158-X] [DOI:10.1016/S0309-1740(03)00158-X]
10. Hsieh Y.H.P., Sheu S.C., Bridgman R.C. (1998). Development of a monoclonal antibody specific to cooked mammalian meats. Journal of Food Protection. 61: 476-481. [DOI: 10.4315/ 0362-028X-61.4.476] [DOI:10.4315/0362-028X-61.4.476] [PMID]
11. Jain S., Brahmbhait M.N., Rank D.N., Joshi C.G., Solanki J.V. (2007). Use of cytochrome b gene variability in detecting meat species by multiplex PCR assay. Indian Journal of Animal Sciences. 77: 880-881.
12. Kesmen Z., Sahin F., Yetim H. (2007). PCR assay for the identification of animal species in cooked sausages. Meat Science. 77: 649-653. [DOI: 10.1016/j.meatsci.2007.05.018] [DOI:10.1016/j.meatsci.2007.05.018]
13. Kitpipit T., Sittichan K., Thanakiatkrai P. (2014). Direct-multiplex PCR assay for meat species identification in food products. Food Chemistry. 163: 77-82. [DOI: 10.1016/j.foodchem.2014. 04.062] [DOI:10.1016/j.foodchem.2014.04.062] [PMID]
14. Lin W.F., Hwang D.F. (2008). A multiplex PCR assay for species identification of raw and cooked bonito. Food Control. 19: 879-885. [DOI: 10.1016/j.foodcont.2007.08.015] [DOI:10.1016/j.foodcont.2007.08.015]
15. Mafra I., Ferreira I.M.P.L.V.O., Oliveira M.B.P.P. (2008). Food authentication by PCR-based methods. European Food Research and Technology. 227: 649-665. [DOI: 10.1007/ s00217-007-0782-x] [DOI:10.1007/s00217-007-0782-x]
16. Mahajan M.V., Gadekar Y.P., Dighe V.D., Kokane R.D., Bannalikar A.S. (2011). Molecular detection of meat animal species targeting MT 12S rRNA gene. Meat Science. 88: 23-27. [DOI: 10.1016/j.meatsci.2010.11.026] [DOI:10.1016/j.meatsci.2010.11.026]
17. Matsunaga T., Chikuni K., Tanabe R., Muroya S., Shibata K., Yamada J., Shinmura Y. (1999). A quick and simple method for the identification of meat species and meat products by PCR assay. Meat Science. 51: 143-148. [DOI: 10.1016/S0309-1740(98)00112-0] [DOI:10.1016/S0309-1740(98)00112-0]
18. Mehdizadeh M., Mousavi S.M., Rabiei M., Moradian K., Eskandari S., Abbasi Fesarani M., Rastegar H., Alebouyeh M. (2014). Detection of chicken meat adulteration in raw hamburger using polymerase chain reaction. Journal of Food Quality and Hazards Control. 1: 36-40.
19. Nejad F.P., Tafvizi F., Ebrahimi M.T., Hosseni S.E. (2014). Optimization of multiplex PCR for the identification of animal species using mitochondrial genes in sausages. European Food Research and Technology. 239: 533-541. [DOI: 10. 1007/s00217-014-2249-1] [DOI:10.1007/s00217-014-2249-1]
20. Ortea I., Pascoal A., Ca-as B., Gallardo J.M., Barros‐Velázquez J., Calo‐Mata P. (2012). Food authentication of commercially‐relevant shrimp and prawn species: from classical methods to foodomics. Electrophoresis. 33: 2201-2211. [DOI: 10.1002/elps.201100576] [DOI:10.1002/elps.201100576]
21. Partis L., Croan D., Guo Z., Clark R., Coldham T., Murby J. (2000). Evaluation of a DNA fingerprinting method for determining the species origin of meats. Meat Science. 54: 369-376. [DOI: 10.1016/S0309-1740(99)00112-6] [DOI:10.1016/S0309-1740(99)00112-6]
22. Reid L.M., O'Donnell C.P., Downey G. (2006). Recent technological advances for the determination of food authenticity. Trends in Food Science and Technology.17: 344-353. [DOI: 10.1016/j.tifs.2006.01.006] [DOI:10.1016/j.tifs.2006.01.006]
23. Rodríguez M.A., García T., González I., Asensio L., Hernandez P.E., Martin R. (2004). PCR identification of beef, sheep, goat, and pork in raw and heat-treated meat mixtures. Journal of Food Protection. 67: 172-177. [DOI: 10.4315/0362-028X-67. 1.172] [DOI:10.4315/0362-028X-67.1.172] [PMID]
24. Ruiz OrdunaA., Husby E., Yang C.T., Ghosh D., Beaudry F. (2015). Assessment of meat authenticity using bioinformatics, targeted peptide biomarkers and high-resolution mass spectrometry. Food Additives and Contaminants: Part A. 32: 1709-1717. [DOI: 10.1080/19440049.2015.1064173] [DOI:10.1080/19440049.2015.1064173]
25. Saez R., Sanz Y., Toldra F. (2004). PCR-based fingerprinting techniques for rapid detection of animal species in meat products. Meat Science. 66: 659-665. [DOI: 10.1016/S0309-1740(03)00186-4] [DOI:10.1016/S0309-1740(03)00186-4]
26. Shayan P., Al-Taghlubee D., Misaghi A., Shayan D., Gandomi H., AkhondzadehBasti A., Alghassab T., Kamkar A., Khanjari A., Eckert B. (2018). An innovative reverse line blot for simultaneous detection of animal species in food. European Food Research and Technology. 244: 1711-1717. [DOI: 10. 1007/s00217-018-3083-7] [DOI:10.1007/s00217-018-3083-7]
27. Zha D., Xing X., Yang F. (2010). A multiplex PCR assay for fraud identification of deer products. Food Control. 21: 1402-1407. [DOI: 10.1016/j.foodcont.2010.04.013] [DOI:10.1016/j.foodcont.2010.04.013]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb