Volume 6, Issue 1 (March 2019)                   J. Food Qual. Hazards Control 2019, 6(1): 16-24 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mojaddar Langroodi A, Tajik H, Mehdizadeh T. Antibacterial and Antioxidant Characteristics of Zataria multiflora Boiss Essential Oil and Hydroalcoholic Extract of Rhus coriaria L. . J. Food Qual. Hazards Control 2019; 6 (1) :16-24
URL: http://jfqhc.ssu.ac.ir/article-1-514-en.html
Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran , drali_ml2@yahoo.com
Abstract:   (3678 Views)
Background: The increasing demand for natural preservatives results in their extended usefulness. The objective of the present study was to investigate the physicochemical and antioxidative characteristics of Rhus coriaria L. (sumac) fruit and comparison of its antioxidative and antibacterial activity with Zataria multiflora Essential Oil (ZEO) as native Iranian natural additives.
Methods: Antioxidant activities of Z. multiflora Boiss and sumac were analyzed by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, 2, 2'-azino-bis 3-ethylbenzothiazoline-6-sulphonic acid (ABTS). Reducing power tests were used for measuring antioxidant activity. Total phenolic content of extract and essential oil were studied as well. The Minimal Inhibitory Concentration (MIC), Minimal Bactericidal Concentration (MBC), and Fractional Inhibitory Concentration (FIC) of a hydroalcoholic extract of sumac and ZEO against of Salmonella Typhimurium and Listeria monocytogenes were studied. Statistical analysis of data was performed using the SPSS software.
Results: The phenolic content in sumac extract (305.65 mg/g) was significantly (p˂0.05) higher than ZEO (179.42 mg/100 g). The highest level of antibacterial activity was demonstrated by ZEO with the MICs of 0.625 for S. Typhimurium and 1.25 mg/ml for L. monocytogenes.
Conclusion: Sumac extract showed more potent antioxidative activity than ZEO. However, based on the results of antibacterial activity, ZEO had more potent than sumac extract, significantly.

DOI: 10.18502/jfqhc.6.1.454
Full-Text [PDF 483 kb]   (1334 Downloads)    
Type of Study: Original article | Subject: Special
Received: 18/01/30 | Accepted: 18/11/13 | Published: 19/03/08

References
1. Aliakbarlu J., Khalili Sadaghiani S., Mohammadi S. (2013). Comparative evaluation of antioxidant and antifood-borne bacterial activities of essential oils from some spices commonly consumed in Iran. Food Science and Biotechnology. 22: 1487-1493. [DOI: 10.1007/s10068-013-0242-2] [DOI:10.1007/s10068-013-0242-2]
2. Aliakbarlu J., Mohammadi S., Khalili S. (2014). A study on antioxidant potency and antibacterial activity of water extracts of some spices widely consumed in Iranian diet. Journal of Food Biochemistry. 38: 159-166. [DOI: 10.1111/jfbc.12034] [DOI:10.1111/jfbc.12034]
3. Anzabi Y. (2015). In vitro study of Berberis vulgaris, Actinidia deliciosa and Allium cepa L. antibacterial effects on Listeria monocytogenes. Crescent Journal of Medical and Biological Sciences. 2: 111-115.
4. Bazargani-Gilani B., Tajik H., Aliakbarlu J. (2014). Physicochemical and antioxidative characteristics of Iranian pomegranate (Punica granatum L. cv. Rabbab-e-Neyriz) juice and comparison of its antioxidative activity with Zataria multiflora Boiss essential oil. Veterinary Research Forum. 5: 313-318. [PMID] [PMCID]
5. Bursal E., Koksal E. (2011). Evaluation of reducing power and radical scavenging activities of water and ethanol extracts from sumac (Rhus coriaria L.). Food Research International. 44: 2217-2221. [DOI: 10.1016/j.foodres.2010.11.001] [DOI:10.1016/j.foodres.2010.11.001]
6. Cai Y., Luo Q., Sun M., Corke H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences. 74: 2157-2184. [DOI: 10.1016/j.lfs.2003.09.047] [DOI:10.1016/j.lfs.2003.09.047]
7. Cho Y.S., Oh J.J., Oh K.H. (2011). Synergistic anti-bacterial and proteomic effects of epigallocatechin gallate on clinical isolates of imipenem-resistant Klebsiella pneumoniae. Phytomedicine. 18: 941-946.‏ [DOI: 10.1016/j.phymed.2011. 03.012] [DOI:10.1016/j.phymed.2011.03.012] [PMID]
8. Chorianopoulos N., Kalpoutzakis E., Aligiannis N., Mitaku S., Nychas G.J., Harounian S.A. (2004). Essential oils of Satureja, Origanum, and Tymus species: chemical composition and antibacterial activities against foodborne pathogens. Journal of Agricultural and Food Chemistry. 52: 8261-8267. [DOI: 10.1021/jf049113i] [DOI:10.1021/jf049113i]
9. Erturk O. (2006). Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia. 61: 275-278. [DOI: 10.2478/s11756-006-0050-8] [DOI:10.2478/s11756-006-0050-8]
10. Ettehad G.H., Arab R. (2007). Evaluation of antibacterial effects of Shiraz oregano essence (Zataria multiflora Boiss) on Salmonella typhi and comparing with antibiotics. Research Journal of Biological Sciences. 2: 674-676.
11. Fazeli M.R., Amin G.R., Ahmadian Attari M.M., Ashtiani H., Jamalifar H., Samadi N. (2007). Antimicrobial activities of Iranian sumac and avishan-e shirazi (Zataria multiflora) against some food-borne bacteria. Food Control. 18: 646-649. [DOI: 10.1016/j.foodcont.2006.03.002] [DOI:10.1016/j.foodcont.2006.03.002]
12. Gliszczyńska-Świgło A. (2006). Antioxidant activity of water soluble vitamins in the TEAC (trolox equivalent antioxidant capacity) and the FRAP (ferric reducing antioxidant power) assays. Food Chemistry. 96: 131-136. [DOI: 10.1016/j. foodchem.2005.02.018] [DOI:10.1016/j.foodchem.2005.02.018]
13. Han J., Weng X., Bi K. (2008). Antioxidants from a Chinese medicinal herb–Lithospermum erythrorhizon. Food Chemistry. 106: 2-10. [DOI: 10.1016/j.foodchem.2007.01.031] [DOI:10.1016/j.foodchem.2007.01.031]
14. Hosseinzadeh H., Ramezani M., Salmani G.A. (2000). Antinociceptive, anti-inflammatory and acute toxicity effects of Zataria multiflora Boiss extracts in mice and rats. Journal of Ethnopharmacology. 73: 379-385. [DOI: 10.1016/S0378-8741(00)00238-5] [DOI:10.1016/S0378-8741(00)00238-5]
15. Kil H.Y., Seong E.S., Ghimire B.K., Chung I.M., Kwon S.S., Goh E.J., Heo K., Kim M.J., Lim J.D., Lee D., Yu C.Y. (2009). Antioxidant and antimicrobial activities of crude sorghum extract. Food Chemistry. 115: 1234-1239. [DOI: 10.1016/j. foodchem.2009.01.032] [DOI:10.1016/j.foodchem.2009.01.032]
16. Kizil S., Turk M. (2010). Microelement contents and fatty acid compositions of Rhus coriaria L. and Pistacia terebinthus L. fruits spread commonly in the south eastern Anatolia region of Turkey. Natural Product Research. 24: 92-98. [DOI: 10.1080/ 14786410903132555] [DOI:10.1080/14786410903132555] [PMID]
17. Kosar M., Bozan B., Temelli F., Baser K.H.C. (2007). Antioxidant activity and phenolic composition of sumac (Rhus coriaria L.) extracts. Food Chemistry. 103: 952-959. [DOI: 10.1016/j. foodchem.2006.09.049] [DOI:10.1016/j.foodchem.2006.09.049]
18. Lin C.W., Yu C.W., Wu S.C., Yih K.H. (2009). DPPH free-radical scavenging activity, total phenolic contents and chemical composition analysis of forty-two kinds of essential oils. Journal of Food and Drug Analysis. 17: 386-395.
19. Liu X., Dong M., Chen X., Jiang M., Lv X., Yan G. (2007). Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chemistry. 105: 548-554. [DOI: 10.1016/ j.foodchem.2007.04.008] [DOI:10.1016/j.foodchem.2007.04.008]
20. Liu H., Qiu N., Ding H., Yao R. (2008). Polyphenols contents and antioxidant capacity of 68 Chinese herbals suitable for medical or food uses. Food Research International. 41: 363-370. [DOI: 10.1016/j.foodres.2007.12.012] [DOI:10.1016/j.foodres.2007.12.012]
21. Marriott P.J., Shellie R., Cornwell C. (2001). Gas chromatographic technologies for the analysis of essential oils. Journal of Chromatography A. 936: 1-22. [DOI: 10.1016/S0021-9673 (01)01314-0] [DOI:10.1016/S0021-9673(01)01314-0]
22. Mehdizadeh T., Narimani R., Mojaddar Langroodi A., Moghaddas Kia E., Neyriz-Naghadehi M. (2018). Antimicrobial effects of Zataria multiflora essential oil and Lactobacillus acidophilus on Escherichia coli O157 stability in the Iranian probiotic white-brined cheese. Journal of Food Safety. 38: e12476. [DOI: 10. 1111/jfs.12476] [DOI:10.1111/jfs.12476]
23. Mehrdad M., Zebardast M., Abedi G., Koupaei M.N., Rasouli H., Talebi M. (2009). Validated high-throughput HPLC method for the analysis of flavonol aglycones myricetin, quercetin, and kaempferol in Rhus coriaria L. using a monolithic column. Journal of AOAC International. 92: 1035-1043. [PMID]
24. Mojaddar Langroodi A., Tajik H., Mehdizadeh T., Moradi M., Moghaddas Kia E., Mahmoudian A..R (2018). Effects of sumac extract dipping and chitosan coating enriched with Zataria multiflora Boiss oil on the shelf-life of meat in modified atmosphere packaging. LWT-Food Science and Technology. 98: 372-380. [DOI: 10.1016/j.lwt.2018.08.063] [DOI:10.1016/j.lwt.2018.08.063]
25. Moradi M., Tajik H., Rohani S.M.R., Oromiehie A.R., Malekinejad H., Aliakbarlu J., Hadian M. (2012). Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT-Food Science and Technology. 46: 477-484. [DOI: 10.1016/j.lwt.2011.11. 020] [DOI:10.1016/j.lwt.2011.11.020]
26. Pourmortazavi S.M., Taghdiri M., Makari V., Rahimi-Nasrabadi M., Batooli H. (2017). Reducing power of Eucalyptus oleosa leaf extracts and green synthesis of gold nanoparticles using the extract. International Journal of Food Properties. 20: 1097-1103. [DOI: 10.1080/10942912.2016.1203334] [DOI:10.1080/10942912.2016.1203334]
27. Prakash B., Kedia A., Mishra P.K., Dubey N.K. (2015). Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities–potentials and challenges. Food Control. 47: 381-391. [DOI: 10.1016/j.foodcont.2014.07.023] [DOI:10.1016/j.foodcont.2014.07.023]
28. Rayne S., Mazza G. (2007). Biological activities of extracts from sumac (Rhus spp.): a review. Plant Foods for Human utrition. 62: 165-175. [DOI: 10.1007/s11130-007-0058-4] [DOI:10.1007/s11130-007-0058-4]
29. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. (1999). Antioxidant activity applying an improve ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 26: 1231-1237. [DOI: 10.1016/S0891-5849(98)00315-3] [DOI:10.1016/S0891-5849(98)00315-3]
30. Rohani S.M.R., Moradi M., Mehdizadeh T., Saei-Dehkordi S.S., Griffiths M.W. (2011). The effect of nisin and garlic (Allium sativum L.) essential oil separately and in combination on the growth of Listeria monocytogenes. LWT-Food Science and Technology. 44: 2260-2265. [DOI: 10.1016/j.lwt.2011.07.020] [DOI:10.1016/j.lwt.2011.07.020]
31. Sanchez-Moreno C., Larrauri J.A., Saura-Calixto F. (1999). Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Research International. 32: 407-412. [DOI: 10.1016/ S0963-9969(99)00097-6] [DOI:10.1016/S0963-9969(99)00097-6]
32. Shabbir A. (2012). Rhus coriaria linn, a plant of medicinal, nutritional and industrial importance: a review. The Journal of Animal and Plant Sciences. 22: 505-512.
33. Shan B., Cai Y..Z, Brooks J.D., Corke H. (2007). The in vitro antibacterial activity of dietary spice and medicinal herb extracts. International Journal of Food Microbiology. 117: 112-119. [DOI: 10.1016/j.ijfoodmicro.2007.03.003] [DOI:10.1016/j.ijfoodmicro.2007.03.003]
34. Sharififar F., Moshafi M.H., Mansouri S.H., Khodashenas M., Khoshnoodi M. (2007). In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss. Food Control. 18: 800-805. [DOI: 10.1016/j.foodcont.2006.04.002] [DOI:10.1016/j.foodcont.2006.04.002]
35. Shukla S., Mehta A., Bajpai V.K., Shukla S. (2009). In vitro antioxidant activity and total phenolic content of ethanolic leaf extract of Stevia rebaudiana Bert. Food and Chemical Toxicology. 47: 2338-2343. [DOI: 10.1016/j.fct.2009.06.024] [DOI:10.1016/j.fct.2009.06.024]
36. Singh A., Singh R.K., Bhunia A.K., .Singh N(2003). Efficacy of plant essential oils as antimicrobial agents against Listeria monocytogenes in hotdogs. LWT-Food Science and Technology. 36: 787-794. [DOI: 10.1016/S0023-6438(03)00112-9] [DOI:10.1016/S0023-6438(03)00112-9]
37. Siripatrawan U., Harte B.R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloid. 24: 770-775. [DOI: 10. 1016/j.foodhyd.2010.04.003] [DOI:10.1016/j.foodhyd.2010.04.003]
38. Verzelloni E., Tagliazucchi D., Conte A. (2007). Relationship between the antioxidant properties and the phenolic and flavonoid content in traditional balsamic vinegar. Food Chemistry. 105: 564-571. [DOI: 10.1016/j.foodchem.2007.04.014] [DOI:10.1016/j.foodchem.2007.04.014]
39. Wang S., Zhu F. (2018). Quality attributes of bread fortified with staghorn sumac extract. Journal of Texture Studies. 49: 129-134. [DOI: 10.1111/jtxs.12283] [DOI:10.1111/jtxs.12283]
40. Yu J., Lei J., Yu H., Cai X., Zou G. (2004). Chemical composition and antimicrobial activity of the essential oil of Scutellaria barbata. Phytochemistry 65: 881-884. [DOI: 10.1016/j. phytochem.2004.02.005] [DOI:10.1016/j.phytochem.2004.02.005] [PMID]
41. Zangiabadi M., Sahari M.A., Barzegar M. (2012). Zataria multiflora and Bunium persicum essential oils as two natural antioxidants. Journal of Medicinal Plants. 1: 8-21.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb