Volume 6, Issue 2 (June 2019)                   J. Food Qual. Hazards Control 2019, 6(2): 58-65 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirzaie M, Saei-Dehkordi S, Levin D. Lipid and β-Carotene Production by Rhodosporidium diobovatum Cultured with Different Carbon to Nitrogen Ratios. J. Food Qual. Hazards Control 2019; 6 (2) :58-65
URL: http://jfqhc.ssu.ac.ir/article-1-545-en.html
Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada , mmirzaei29@gmail.com
Abstract:   (2348 Views)
Background: In food industry, carotenoids are used as food colorants conferring yellow to red color. This research was designed to study on lipid and β-carotene production by Rhodosporidium diobovatum cultured with different Carbon to Nitrogen (C/N) ratios.
Methods: R. diobovatum was cultured in a medium containing 40 g/l glucose (as the carbon source) and different C/N ratios (20, 50, and 80), which were established by adding different amounts of (NH4)2SO4 (3.78, 1.51, and 0.94 g/l) as the source of nitrogen. High performance liquid chromatography, gas chromatography, and microplate reader were used to determine the glucose concentration, lipid production, and β-carotene concentration, respectively. Data were analyzed using IBM SPSS statistics (v. 24).
Results: Cultures with a C/N ratio of 50 produced the greatest amount of lipids during 120 h pi. However, lipid synthesis in the first 48 h pi was very low for all three C/N ratios. Analyses of the lipid composition revealed that oleic acid and linoleic acid were the dominant (60%) fatty acids. Cultures with a C/N ratio of 50 also produced the greatest amount of β-carotene.
Conclusion: R. diobovatum in the C/N of 50 culture medium resulted in greater concentrations of lipid and β-carotene. Defining the optimum C/N ratio will enable development of optimized bioprocess engineering parameters for scale-up production of lipid and β-carotene in food industries by this yeast species.

DOI: 10.18502/jfqhc.6.2.956
Full-Text [PDF 469 kb]   (946 Downloads)    
Type of Study: Original article | Subject: Special
Received: 17/12/13 | Accepted: 18/11/25 | Published: 19/06/01

References
1. Aksu Z., Eren A.T. (2007). Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochemical Engineering Journal. 35: 107-113. [DOI:10.1016/j.bej.2007.01.004] [DOI:10.1016/j.bej.2007.01.004]
2. Belury M.A. (2002). Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action. Annual Review of Nutrition. 22: 505-531. [DOI:10.1146/annurev.nutr.22.021302.121842] [PMID]
3. Berman J., Zorrilla-López U., Farré G., Zhu C., Sandmann G., Twyman R.M., Capell T., Christou P. (2015). Nutritionally important carotenoids as consumer products. Phytochemistry Reviews. 14: 727-743. [DOI: 10.1007/s11101-014-9373-1] [DOI:10.1007/s11101-014-9373-1]
4. Braunwald T., Schwemmlein L., Graeff-Hönninger S., French W.T., Hernandez R., Holmes W.E., Claupein W. (2013). Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Applied Microbiology and Biotechnology. 97: 6581-6588. [DOI: 10.1007/s00253-013-5005-8] [DOI:10.1007/s00253-013-5005-8] [PMID]
5. Buzzini P., Innocenti M., Turchetti B., Libkind D., van Broock M., Mulinacci N. (2007). Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Canadian Journal of Microbiology. 53: 1024-1031. [DOI: 10.1139/W07-068] [DOI:10.1139/W07-068] [PMID]
6. Calder P.C. (2015). Functional roles of fatty acids and their effects on human health. Journal of Parenteral and Enteral Nutrition. 39: 18S-32S. [DOI: 10.1177/0148607115595980] [DOI:10.1177/0148607115595980] [PMID]
7. Cazzonelli C.I. (2011). Carotenoids in nature: insights from plants and beyond. Functional Plant Biology. 38: 833-847. [DOI: 10. 1071/FP11192] [DOI:10.1071/FP11192]
8. Cheng Q. (2006). Structural diversity and functional novelty of new carotenoid biosynthesis genes. Journal of Industrial Microbiology and Biotechnology. 33: 552-559. [DOI: 10.1007/ s10295-006-0121-4] [DOI:10.1007/s10295-006-0121-4] [PMID]
9. Chi Z., Zheng Y., Jiang A., Chen S. (2011). Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. Applied Biochemistry and Biotechnology. 165: 442-453. [DOI: 10. 1007/s12010-011-9263-6] [DOI:10.1007/s12010-011-9263-6]
10. Ciccone M.M., Cortese F., Gesualdo M., Carbonara S., Zito A., Ricci G., De Pascalis F., Scicchitano P., Riccioni G. (2013). Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediators of Inflammation. 2013: 782137. [DOI: 10.1155/2013/782137] [DOI:10.1155/2013/782137] [PMID] [PMCID]
11. Flores-Cotera L.B., Martin R., Sanchez S. (2001). Citrate, a possible precursor of astaxanthin in Phaffia rhodozyma: influence of varying levels of ammonium, phosphate and citrate in a chemically defined medium. Applied Microbiology and Biotechnology. 55: 341-347. [DOI: 10.1007/s002530000498] [DOI:10.1007/s002530000498] [PMID]
12. Jaswir I., Noviendri D., Hasrini R.F., Octavianti F. (2011). Carotenoids: sources, medicinal properties and their application in food and nutraceutical industry. Journal of Medicinal Plants Research. 5: 7119-7131. [DOI: 10.5897/JMPRx11.011] [DOI:10.5897/JMPRX11.011]
13. Koba K., Yanagita T. (2014). Health benefits of conjugated linoleic acid (CLA). Obesity Research and Clinical Practice. 8: e525-e532. [DOI: 10.1016/j.orcp.2013.10.001] [DOI:10.1016/j.orcp.2013.10.001] [PMID]
14. Liang M.H., Jiang J.G. (2013). Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Progress in Lipid Research. 52: 395-408. [DOI: 10.1016/j. plipres.2013.05.002] [DOI:10.1016/j.plipres.2013.05.002] [PMID]
15. Maldonade I.R., Rodriguez-Amaya D.B., Scamparini A.R..P (2008). Carotenoids of yeasts isolated from the Brazilian ecosystem. Food Chemistry. 107: 145-150. [DOI: 10.1016/j.food chem.2007.07.075] [DOI:10.1016/j.foodchem.2007.07.075]
16. Munch G., Sestric R., Sparling R., Levin D.B., Cicek N. (2015). Lipid production in the under-characterized oleaginous yeasts, Rhodosporidium babjevae and Rhodosporidium diobovatum, from biodiesel-derived waste glycerol. Bioresource Technology. 185: 49-55. [DOI: 10.1016/ j.biortech.2015.02.051] [DOI:10.1016/j.biortech.2015.02.051] [PMID]
17. Papanikolaou S., Aggelis G. (2011). Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. European Journal of Lipid Science and Technology. 113: 1031-1051. [DOI: 10.1002/ejlt.201100014] [DOI:10.1002/ejlt.201100014]
18. Saini R.K., Keum Y.S. (2017). Progress in microbial carotenoids production. Indian Journal of Microbiology. 57: 129-130. [DOI: 10.1007/s12088-016-0637-x] [DOI:10.1007/s12088-016-0637-x] [PMID] [PMCID]
19. Sestric R., Munch G., Cicek N., Sparling R., Levin D.B. (2014). Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions. Bioresource Technology. 164: 41-46. [DOI: 10.1016/j.biortech.2014.04.016] [DOI:10.1016/j.biortech.2014.04.016] [PMID]
20. Sitepu I.R., Garay L.A., Sestric R., Levin D., Block D.E., German J.B., Boundy-Mills K.L. (2014). Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnology Advances. 32: 1336-1360. [DOI: 10.1016/ j.biotechadv.2014.08.003] [DOI:10.1016/j.biotechadv.2014.08.003] [PMID]
21. Skibsted L.H. (2012). Carotenoids in antioxidant networks. Colorants or radical scavengers. Journal of Agricultural and Food Chemistry. 60: 2409-2417. [DOI: 10.1021/jf2051416] [DOI:10.1021/jf2051416] [PMID]
22. Somashekar D., Joseph R. (2000). Inverse relationship between carotenoid and lipid formation in Rhodotorula gracilis according to the C/N ratio of the growth medium. World Journal of Microbiology and Biotechnology. 16: 491-493. [DOI: 10.1023/ A:1008917612616] [DOI:10.1023/A:1008917612616]
23. Tinoi J., Rakariyatham N., Deming R.L. (2005). Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed mung bean waste flour as substrate. Process Biochemistry. 40: 2551-2557. [DOI: 10.1016/j.procbio.2004. 11.005] [DOI:10.1016/j.procbio.2004.11.005]
24. Vieira J.P.F., Ienczak J.L., Rossell C.E.V., Pradella J.G.C., Franco T.T. (2014). Microbial lipid production: screening with yeasts grown on Brazilian molasses. Biotechnology Letters. 36: 2433-2442. [DOI: 10.1007/s10529-014-1624-0] [DOI:10.1007/s10529-014-1624-0] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb