Volume 9, Issue 1 (March 2022)                   J. Food Qual. Hazards Control 2022, 9(1): 49-56 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafari Kiasari F, Azizkhani M, Tooryan F. Antifungal Activity of Nanoemulsion of Iranian Tarragon (Artemisia dracunculus L.) Essential Oil. J. Food Qual. Hazards Control. 2022; 9 (1) :49-56
URL: http://jfqhc.ssu.ac.ir/article-1-554-en.html
Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran , m.azizkhani@ausmt.ac.ir
Abstract:   (120 Views)
Background: Despite the considerable activity of herbal Essential Oils (EOs) as safe food preservatives, problems such as high volatility, low water solubility, and low stability in adverse environmental conditions restrict their use in food products. This work aimed to investigate in vitro antifungal activity of oil-in-water nanoemulsion of Iranian Artemisia dracunculus L. (tarragon) EO.
Methods: Nanoemulsion of tarragon EO was formed by ultrasound method through blending 10 wt% of tarragon EO, 85 wt% water, and the mixture of 5 wt% surfactants (Tween® 80/Span® 80). The droplet size and zeta potential were measured. The antifungal activity was evaluated against four different fungi, Aspergillus niger, Penicillium spp., Fusarium spp., and Saccharomyces cerevisiae through determining Minimum Inhibitory Concentration (MIC), Minimum Fungicidal Concentration (MFC), and mycelial growth test. Data were statistically analyzed by the software of SPSS 22.0.
Results: Main fragments of tarragon EO found to be beta-cis-ocimene, estragole, and beta-trans-ocimene. Nanodroplets had a zeta potential of -30 mV and an average diameter of 50 nm. For A. niger, Penicillium spp., Fusarium spp., and S. cerevisiae, the MIC and MFC values of nanoemulsion were identical and obtained at 1.50, 2.05, 1.61, and 1.14 μg/ml, respectively, while these values of free EO were higher and as follows: 2.81, 4.52, 3.75, and 2.40 μg/ml, respectively. Mycelial growth showed that encapsulated EO had the most fungitoxic potential against A. niger (inhibition 41%) and S. cerevisiae (inhibition 68%). Also, Penicillium spp. was the most resistant against both EO and nanoemulsion.
Conclusion: The growth inhibitory activity of tarragon was significantly enhanced when encapsulated as nanoemulsion.

DOI: 10.18502/jfqhc.9.1.9690
Full-Text [PDF 503 kb]   (58 Downloads)    
Type of Study: Original article | Subject: Special
Received: 20/11/17 | Accepted: 21/12/19 | Published: 22/03/28

References
1. Abd-Elsalam K.A., Khokhlov A.R. (2015). Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds. Applied Nanoscience. 5: 255-265. [DOI: 10.1007/ s13204-014-0398-y] [DOI:10.1007/s13204-014-0398-y]
2. Adams R.P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. 4th edition. Allured Publishing Corporation, Carol Stream, USA.
3. Aristil J., Venturini G., Maddalena G., Toffolatti S.L., Spada A. (2020). Fungal contamination and aflatoxin content of maize, moringa and peanut foods from rural subsistence farms in South Haiti. Journal of Stored Products Research. 85: 101550. [DOI: 10.1016/j.jspr.2019.101550] [DOI:10.1016/j.jspr.2019.101550]
4. Ayoughi F., Barzegar M., Sahari M.A., Naghdibadi H. (2011). Chemical compositions of essential oils of Artemisia dra-cunculus L. and endemic Matricaria chamomilla L. and an evaluation of their antioxidative effects. Journal of Agricultural Science and Technology. 13: 79-88.
5. Azizkhani M., Jafari Kiasari F., Tooryan F., Shahavi M.H., Partovi R. (2021). Preparation and evaluation of food-grade nanoemulsion of tarragon (Artemisia dracunculus L.) essential oil: antioxidant and antibacterial properties. Journal of Food Science and Technology. 58: 1341-1348. [DOI: 10.1007/ s13197-020-04645-6] [DOI:10.1007/s13197-020-04645-6] [PMID] [PMCID]
6. Balasubramani S., Moola A.K., Vivek K., Kumari B.D.R. (2018). Formulation of nanoemulsion from leaves essential oil of Ocimum basilicum L. and its antibacterial, antioxidant and larvicidal activities (Culex quinquefasciatus). Microbial Pathogenesis. 125: 475-485. [DOI: 10.1016/j.micpath.2018. 10.017] [DOI:10.1016/j.micpath.2018.10.017] [PMID]
7. Bedoya-Serna C.M., Dacanal G.C., Fernandes A.M., Pinho S.C. (2018). Antifungal activity of nanoemulsions encapsulating oregano (Origanum vulgare) essential oil: in vitro study and application in Minas Padrão cheese. Brazilian Journal of Microbiology. 49: 929-935. [DOI: 10.1016/j.bjm.2018.05.004] [DOI:10.1016/j.bjm.2018.05.004] [PMID] [PMCID]
8. Céspedes C.L., Avila J.G., Martínez A., Serrato B., Calderón-Mugica J.C., Salgado-Garciglia R. (2006). Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). Journal of Agricultural and Food Chemistry. 54: 3521-3527. [DOI: 10.1021/jf053071w] [DOI:10.1021/jf053071w] [PMID]
9. Dhifi W., Bellili S., Jazi S., Bahloul N., Mnif W. (2016). Essential oils' chemical characterization and investigation of some biological activities: a critical review. Medicines. 3: 25. [DOI: 10.3390/medicines3040025] [DOI:10.3390/medicines3040025] [PMID] [PMCID]
10. Dickinson E. (2009). Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids. 23: 1473-1482. [DOI: 10. 1016/j.foodhyd.2008.08.005] [DOI:10.1016/j.foodhyd.2008.08.005]
11. Donsì F., Annunziata M., Sessa M., Ferrari G. (2011). Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT-Food Science and Technology. 44: 1908-1914. [DOI: 10.1016/j.lwt.2011.03.003] [DOI:10.1016/j.lwt.2011.03.003]
12. Donsì F., Annunziata M., Vincensi M., Ferrari G. (2012). Design of nanoemulsion-based delivery systems of natural antimicrobials: effect of the emulsifier. Journal of Biotechnology. 159: 342-350. [DOI: 10.1016/j.jbiotec.2011.07.001] [DOI:10.1016/j.jbiotec.2011.07.001] [PMID]
13. Donsì F., Ferrari G. (2016). Essential oil nanoemulsions as antimicrobial agents in food. Journal of Biotechnology. 233: 106-120. [DOI: 10.1016/j.jbiotec.2016.07.005] [DOI:10.1016/j.jbiotec.2016.07.005] [PMID]
14. Falcone P., Speranza B., Del Nobile M.A., Corbo M.R., Sinigaglia M. (2005). A study on the antimicrobial activity of thymol intended as a natural preservative. Journal of Food Protection. 68: 1664-1670. [DOI: 10.4315/0362-028x-68.8.1664] [DOI:10.4315/0362-028X-68.8.1664] [PMID]
15. Fraternale D., Flamini G., Ricci D. (2015). Essential oil composition and antigermination activity of Artemisia dracunculus (tarragon). Natural Product Communications. 10: 1469-1472. [DOI: 10.1177/1934578X1501000839] [DOI:10.1177/1934578X1501000839]
16. Guan W., Li S., Yan R., Tang S., Quan C. (2007). Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. Food Chemistry. 101: 1558-1564. [DOI: 10.1016/j.foodchem.2006. 04.009] [DOI:10.1016/j.foodchem.2006.04.009]
17. Hasani M., Elhami Rad A.H., Mohammad hosseini M., Shahidi Noghabi M. (2015). Physicochemical characteristic of microencapsulated fish oil by freeze-drying using different combinations of wall materials. Biosciences Biotechnology Research Asia. 12: 45-51. [DOI: 10.13005/bbra/2171] [DOI:10.13005/bbra/2171]
18. Kordali S., Kotan R., Mavi A., Cakir A., Ala A., Yildirim A. (2005). Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum, and Artemisia spicigera essential oils. Journal of Agricultural and Food Chemistry. 53: 9452-9458. [DOI: 10.1021/ jf0516538] [DOI:10.1021/jf0516538] [PMID]
19. Li Z.-H., Cai M., Liu Y.-S., Sun P.-L. (2018). Development of finger citron (Citrus medica L. var. sarcodactylis) essential oil loaded nanoemulsion and its antimicrobial activity. 94: 317-323. Food Control. [DOI: 10.1016/j.foodcont.2018.07.009] [DOI:10.1016/j.foodcont.2018.07.009]
20. Lin L.-Z., Harnly J.M. (2012). LC-PDA-ESI/MS identification of the phenolic components of three compositae spices: chamomile, tarragon, and Mexican arnica. Natural product Communications. 7: 749-752. [DOI: 10.1177/ 1934578X1200700615] [DOI:10.1177/1934578X1200700615]
21. Lv F., Liang H., Yuan Q., Li C. (2011). In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Research International. 44: 3057-3064. [DOI: 10.1016/j. foodres.2011.07.030] [DOI:10.1016/j.foodres.2011.07.030]
22. Maham M., Moslemzadeh H., Jalilzadeh-Amin G. (2014). Antinociceptive effect of the essential oil of tarragon (Artemisia dracunculus). Pharmaceutical Biology. 52: 208-212. [DOI: 10.3109/13880209.2013.824007] [DOI:10.3109/13880209.2013.824007] [PMID]
23. McClements D.J., Rao J. (2011). Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition. 51: 285-330. [DOI: 10.1080/10408398.2011. 559558] [DOI:10.1080/10408398.2011.559558] [PMID]
24. Moazeni M., Davari A., Shabanzadeh S., Akhtari J., Saeedi M., Mortyeza-Semnani K., Abastabar M., Nabili M., Hassan Moghadam F., Roohi B., Kelidari H., Nokhodchi A. (2021). In vitro antifungal activity of Thymus vulgaris essential oil nanoemulsion. Journal of Herbal Medicine. 28: 100452. [DOI: 10.1016/j.hermed.2021.100452] [DOI:10.1016/j.hermed.2021.100452]
25. Moghimi R., Ghaderi L., Rafati H., Aliahmadi A., McClements D.J. (2016). Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chemistry. 194: 410-415. [DOI: 10.1016/j.foodchem.2015.07. 139] [DOI:10.1016/j.foodchem.2015.07.139] [PMID]
26. Obolskiy D., Pischel I., Feistel B., Glotov N., Heinrich M. (2011). Artemisia dracunculus L.(tarragon): a critical review of its traditional use, chemical composition, pharmacology, and safety. Journal of Agricultural and Food Chemistry. 59: 11367-11384. [DOI: 10.1021/jf202277w] [DOI:10.1021/jf202277w] [PMID]
27. Patriarca A. (2016). Alternaria in food products. Current Opinion in Food Science. 11: 1-9. [DOI: 10.1016/j.cofs.2016.08.007] [DOI:10.1016/j.cofs.2016.08.007]
28. Pongsumpun P., Iwamoto S., Siripatrawan U. (2020). Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrasonics Sonochemistry. 60: 104604. [DOI: 10. 1016/j.ultsonch.2019.05.021] [DOI:10.1016/j.ultsonch.2019.05.021] [PMID]
29. Ribes S., Fuentes A., Talens P., Barat J.M., Ferrari G., Donsì F. (2017). Influence of emulsifier type on the antifungal activity of cinnamon leaf, lemon and bergamot oil nanoemulsions against Aspergillus niger. Food Control. 73: 784-795. [DOI: 10.1016/j.foodcont.2016.09.044] [DOI:10.1016/j.foodcont.2016.09.044]
30. Rosen M.J., Kunjappu J.T. (2012). Surfactants and interfacial phenomena. 4th edition. John Wiley and Sons Inc, Hoboken, NewJersey. pp: 336-367. [DOI:10.1002/9781118228920]
31. Saifullah M., Ahsan A., Shishir M.R.I. (2016). 12 - Production, stability and application of micro- and nanoemulsion in food production and the food processing industry. Emulsions. 3: 405-442. [DOI: 10.1016/B978-0-12-804306-6.00012-X] [DOI:10.1016/B978-0-12-804306-6.00012-X]
32. Shahavi M.H., Hosseini M., Jahanshahi M., Meyer R.L., Najafpour Darzi G. (2016). Clove oil nanoemulsion as an effective antibacterial agent: taguchi optimization method. Desalination and Water Treatment. 57: 18379-18390. [DOI: 10.1080/ 19443994.2015.1092893] [DOI:10.1080/19443994.2015.1092893]
33. Ventura-Martinez R., Angeles-Lopez G.E., Gonzalez-Trujano M.E., Carrasco O.F., Deciga-Campos M. (2020). Study of antispasmodic and antidiarrheal activities of Tagetes lucida (Mexican tarragon) in experimental models and its mechanism of action. Evidence-Based Complementary and Alternative Medicine. 2020. [DOI: 10.1155/2020/7140642] [DOI:10.1155/2020/7140642] [PMID] [PMCID]
34. Verma M.K., Anand R., Chisti A.M., Kitchlu S., Chandra S., Shawl A.S., Khajuria R.K. (2010). Essential oil composition of Artemisia dracunculus L.(tarragon) growing in Kashmir-India. Journal of Essential Oil Bearing Plants. 13: 331-335. [DOI: 10.1080/0972060X.2010.10643830] [DOI:10.1080/0972060X.2010.10643830]
35. Wan J., Zhong S., Schwarz P., Chen B., Rao J. (2019). Physical properties, antifungal and mycotoxin inhibitory activities of five essential oil nanoemulsions: impact of oil compositions and processing parameters. Food Chemistry. 291: 199-206. [DOI: 10.1016/j.foodchem.2019.04.032] [DOI:10.1016/j.foodchem.2019.04.032] [PMID]
36. Zhang S., Zhang M., Fang Z., Liu Y. (2017). Preparation and characterization of blended cloves/cinnamon essential oil nanoemulsions. LWT - Food Science and Technology. 75: 316-322. [DOI: 10.1016/j.lwt.2016.08.046] [DOI:10.1016/j.lwt.2016.08.046]
37. Zhang Z., Vriesekoop F., Yuan Q., Liang H. (2014). Effects of nisin on the antimicrobial activity of D-limonene and its nanoemulsion. Food Chemistry. 150: 307-312. [DOI: 10.1016/j.foodchem.2013.10.160] [DOI:10.1016/j.foodchem.2013.10.160] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb