Volume 7, Issue 2 (June 2020)                   J. Food Qual. Hazards Control 2020, 7(2): 84-93 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hartanti D, Septiyaningrum N, Hamad A. Combination of Clove and Lemon Basil Essential Oils for Preservation of Chicken Meat. J. Food Qual. Hazards Control 2020; 7 (2) :84-93
URL: http://jfqhc.ssu.ac.ir/article-1-647-en.html
Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto, Banyumas, Indonesia , dwihartanti@ump.ac.id
Abstract:   (2620 Views)
Background: Clove and lemon basil are widely used in Indonesian culinary and known for their antimicrobial properties. This study was designed to identify the chemical constituents of single clove and lemon basil Essential Oils (EOs) as well as determine the potential of the combinations of both EO for preserving chicken meats.
Methods: The compositions of clove and lemon basil EOs were evaluated with Gas Chromatography-Mass Spectrometer. Three different concentration ratios of the combination of clove and lemon basil EOs (2:0.2, 1:1, and 0.1:2% v/v) were prepared along with single clove and lemon basil EOs in a concentration of 1% v/v. Their potential preservation effect was evaluated by observing the reduction of the microbial growth on the meats by evaluating Optical Density (OD) of cultured bacterial suspensions during 15 days of refrigerated storage. Statistical analyses were conducted by SPSS Statistics v. 20.
Results: The major constituents of clove EO were eugenol, β-caryophyllene, and α-humulene, while those of lemon basil were estragol, linalool, E-citral, and Z-citral. Both treatment groups and storage time affected significantly on ODs of the samples. Combination of these two EOs, particularly at the optimum ratio of 1:1%, showed the best microbial inhibitory activity, and delayed the sensorial changes of the meats for 12 days. 
Conclusion: The combinations of cloves and lemon basil EOs showed a better microbial growth inhibitory activity and preservation potential than those of the single use. This meat preservation effects might be related to the presence of high fractions of oxygenated compounds, mainly eugenol, Z-citral, and E-citral in both clove and lemon basil EOs.

DOI: 10.18502/jfqhc.7.2.2888
Full-Text [PDF 522 kb]   (884 Downloads)    
Type of Study: Original article | Subject: Special
Received: 19/11/01 | Accepted: 20/03/15 | Published: 20/06/18

References
1. Al-Hijazeen M., Lee E.J., Mendonca A., Ahn D.U. (2016). Effect of oregano essential oil (Origanum vulgare subsp. hirtum) on the storage stability and quality parameters of ground chicken breast meat. Antioxidant. 5: 18. [DOI: 10.3390/ antiox5020018] [DOI:10.3390/antiox5020018] [PMID] [PMCID]
2. Alnoman M., Udompijitkul P., Sarker M.R. (2017). Chitosan inhibits enterotoxigenic Clostridium perfringens type A in growth medium and chicken meat. Food Microbiology. 64: 15-22. [DOI: 10.1016/j.fm.2016.11.019] [DOI:10.1016/j.fm.2016.11.019] [PMID]
3. Antunes-Rohling A., Artaiz Á., Calero S., Halaihel N., Guillén S., Raso J., Álvarez I., Cebrián G. (2019). Modelling microbial growth in modified-atmosphere-packed hake (Merluccius merluccius) fillets stored at different temperatures. Food Research International. 122: 506-516. [DOI: 10.1016/j. foodres.2019.05.018] [DOI:10.1016/j.foodres.2019.05.018] [PMID]
4. Avetisyan A., Markosian A., Petrosyan M., Sahakyan N., Babayan A., Aloyan S., Trchounian A. (2017). Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complementary and Alternative Medicine. 17: 60. [DOI: 10.1186/s12906-017-1587-5] [DOI:10.1186/s12906-017-1587-5] [PMID] [PMCID]
5. Bassolé I.H.N., Juliani H.R. (2012). Essential oils in combination and their antimicrobial properties. Molecules. 17: 3989-4006. [DOI: 10.3390/molecules17043989] [DOI:10.3390/molecules17043989] [PMID] [PMCID]
6. Bassolé I.H.N., Lamien-Meda A., Bayala B., Obame L.C., Ilboudo A.J., Franz C., Novak J., Nebié R.C., Dicko M.H. (2011). Chemical composition and antimicrobial activity of Cymbopogon citratus and Cymbopogon giganteus essential oils alone and in combination. Phytomedicine. 18: 1070-1074. [DOI: 10.1016/j.phymed.2011.05.009] [DOI:10.1016/j.phymed.2011.05.009] [PMID]
7. Bawcom D.W., Thompson L.D., Miller M.F., Ramsey C.B. (1995). Reduction of microorganisms on beef surfaces utilizing electricity. Journal of Food Protection. 58: 35-38. [DOI: 10.4315/0362-028X-58.1.35] [DOI:10.4315/0362-028X-58.1.35] [PMID]
8. Carovic'-Stanko K., Orlic' S., Politeo O., Strikić F., Kolak I., Milos M., Satovic Z. (2010). Composition and antibacterial activities of essential oils of seven Ocimum taxa. Food Chemistry. 119: 196-201. [DOI: 10.1016/j.foodchem.2009.06.010] [DOI:10.1016/j.foodchem.2009.06.010]
9. Chouhan S., Sharma K., Guleria S. (2017). Antimicrobial activity of some essential oils-present status and future perspectives. Medicines. 4: 58. [DOI: 10.3390/medicines4030058] [DOI:10.3390/medicines4030058] [PMID] [PMCID]
10. Dave D., Ghaly A.E. (2011). Meat spoilage mechanisms and preservation techniques: a critical review. American Journal of Agricultural and Biological Sciences. 6: 486-510. [DOI: 10.3844/ajabssp.2011.486.510] [DOI:10.3844/ajabssp.2011.486.510]
11. De-Oliveira T.L.C., Cardoso M.D.C., Soares R.D.A., Ramos E.M., Piccoli R.H., Tebaldi V.M.R. (2013). Inhibitory activity of Syzygium aromaticum and Cymbopogon citratus (DC.) Stapf. essential oils against Listeria monocytogenes inoculated in bovine ground meat. Brazilian Journal of Microbiology. 44: 357-365. [DOI: 10.1590/S1517-83822013005000040] [DOI:10.1590/S1517-83822013005000040] [PMID] [PMCID]
12. Echeverría I., López-Caballero M.E., Gómez-Guillén M.C., Mauri A.N., Montero M.P. (2018). Active nanocomposite films based on soy proteins-montmorillonite- clove essential oil for the preservation of refrigerated bluefin tuna (Thunnus thynnus) fillets. International Journal of Food Microbiology. 266: 142-149. [DOI: 10.1016/j.ijfoodmicro.2017.10.003] [DOI:10.1016/j.ijfoodmicro.2017.10.003] [PMID]
13. El-Shenawy M.A., Baghdadi H.H., El-Hosseiny L.S. (2015). Antibacterial activity of plants essential oils against some epidemiologically relevant food-borne pathogens. The Open Public Health Journal. 8: 30-34. [DOI: 10.2174/ 1874944501508010030] [DOI:10.2174/1874944501508010030]
14. Erian I., Phillips C.J.C. (2017). Public understanding and attitudes towards meat chicken production and relations to consumption. Animals. 7: 20. [DOI: 10.3390/ani7030020] [DOI:10.3390/ani7030020] [PMID] [PMCID]
15. Erkan N., Tosun Ş.Y., Ulusoy Ş., Üretener G. (2011). The use of thyme and laurel essential oil treatments to extend the shelf life of bluefish (Pomatomus saltatrix) during storage in ice. Journal für Verbraucherschutz und Lebensmittelsicherheit. 6: 39-48. [DOI: 10.1007/s00003-010-0587-x] [DOI:10.1007/s00003-010-0587-x]
16. Gadisa E., Weldearegay G., Desta K., Tsegaye G., Hailu S., Jote K., Takele A. (2019). Combined antibacterial effect of essential oils from three most commonly used Ethiopian traditional medicinal plants on multidrug resistant bacteria. BMC Complementary and Alternative Medicine. 19: 24. [DOI: 10.1186/s12906-019-2429-4] [DOI:10.1186/s12906-019-2429-4] [PMID] [PMCID]
17. Ghabraie M., Vu K.D., Tata L., Salmieri S., Lacroix M. (2016). Antimicrobial effect of essential oils in combinations against five bacteria and their effect on sensorial quality of ground meat. LWT-Food Science and Technology. 66: 332-339. [DOI: 10.1016/j.lwt.2015.10.055] [DOI:10.1016/j.lwt.2015.10.055]
18. Goni P., Lopez P., Sanchez C., Gómez-Lus R., Becerril R., Nerín C. (2009). Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chemistry. 116: 982-989. [DOI: 10.1016/j.foodchem.2009.03. 058] [DOI:10.1016/j.foodchem.2009.03.058]
19. González-García S., Esteve-Llorens X., Moreira M.T., Feijoo G. (2018). Carbon footprint and nutritional quality of different human dietary choices. Science of Total Environment. 644: 77-94. [DOI: 10.1016/j.scitotenv.2018.06.339] [DOI:10.1016/j.scitotenv.2018.06.339] [PMID]
20. Hamad A., Hartanti D. (2015). The use of essential oil of clove (Syzygium aromaticum) as tofu's natural preservative. Farmasains. 2: 289-294.
21. Hamad A., Mahardika M.G.P., Yuliani I., Hartanti D. (2017). Chemical constituents and antimicrobial activities of essential oils of Syzygium polyanthum and Syzygium aromaticum. Rasayan Journal of Chemistry. 10: 564-569. [DOI: 10.7324/RJC.2017.1021693] [DOI:10.7324/RJC.2017.1021693]
22. Hamad A., Nuritasari A., Hartanti D. (2019). A combination of lemongrass and lemon basil essential oils inhibited bacterial growth and improved the shelf life of chicken fillets. Asia-Pacific Journal of Science and Technology. 24: 1-9.
23. Hartanti D., Haqqi M.Z.U., Hamad A. (2018). Potency of combination of essential oils of ginger and lemongrass as fresh chicken meat natural preservative. Advanced Science Letters. 24: 91-94. [DOI: 10.1166/asl.2018.11929] [DOI:10.1166/asl.2018.11929]
24. Hinton A., Cason J.A. (2007). Changes in the bacterial flora of skin of processed broiler chickens washed in solutions of salicylic acid. International Journal of Poultry Sciences. 6: 960-966. [DOI: 10.3923/ijps.2007.960.966] [DOI:10.3923/ijps.2007.960.966]
25. Huang L. (2018). Growth of non-toxigenic Clostridium botulinum mutant LNT01 in cooked beef: one-step kinetic analysis and comparison with C. sporogenes and C. perfringens. Food Research International. 107: 248-256. [DOI: 10.1016/j. foodres.2018.02.028] [DOI:10.1016/j.foodres.2018.02.028] [PMID]
26. Hulankova R., Borilova G., Abdullah F.A.A., Buchtova H. (2018). Microbiological quality of organic chicken meat during refrigerated storage in air and modified atmospheres. British Poultry Science. 59: 506-513. [DOI: 10.1080/00071668.2018. 1496399] [DOI:10.1080/00071668.2018.1496399] [PMID]
27. Hyldgaard M., Mygind T., Meyer R.L. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology. 3: 12. [DOI: 10.3389/fmicb.2012.00012] [DOI:10.3389/fmicb.2012.00012] [PMID] [PMCID]
28. Jayasena D.D., Ahn D.U., Nam K.C., Jo C. (2013). Flavour chemistry of chicken meat: a review. Asian-Australasian Journal of Animal Sciences. 26: 732-742. [DOI: 10.5713/ajas. 2012.12619] [DOI:10.5713/ajas.2012.12619] [PMID] [PMCID]
29. Kaya I., Yigit N., Benli M. (2008). Antimicrobial activity of various extracts of Ocimum basilicum L. and observation of the inhibition effect on bacterial cells by use of scanning electron microscopy. African Journal of Traditional, Complementary and Alternative Medicines. 5: 363-369. [DOI:10.4314/ajtcam.v5i4.31291] [PMID] [PMCID]
30. Khalil A. (2013). Antimicrobial activity of ethanolic extracts of Ocimum basilicum leaf from Saudi Arabia. Biotechnology. 12: 61-64. [DOI: 10.3923/biotech.2013.61.64] [DOI:10.3923/biotech.2013.61.64]
31. Kovács J.K., Felso P., Makszin L., Pápai Z., Horváth G., Ábrahám H., Palkovics T., Böszörményi A., Emődy L., Schneider G. (2016). Antimicrobial and virulence-modulating effects of clove essential oil on the foodborne pathogen Campylobacter jejuni. Applied and Environmental Microbiology. 82: 6158-6166. [DOI: 10.1128/AEM.01221-16] [DOI:10.1128/AEM.01221-16] [PMID] [PMCID]
32. Liu X., Cai J., Chen H., Zhong Q., Hou Y., Chen W., Chen W. (2020). Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microbial Pathogenesis. 141: 103980. [DOI: 10.1016/j.micpath.2020.103980] [DOI:10.1016/j.micpath.2020.103980] [PMID]
33. Lv F., Liang H., Yuan Q., Li C. (2011). In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Research International. 44: 3057-3064. [DOI: 10.1016/j. foodres.2011.07.030] [DOI:10.1016/j.foodres.2011.07.030]
34. Mäntele W., Deniz E. (2017). UV-VIS absorption spectroscopy: Lambert-Beer reloaded. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 173: 965-968. [DOI: 10.1016/j.saa.2016.09.037] [DOI:10.1016/j.saa.2016.09.037] [PMID]
35. Mohamed M.S.M., Abdallah A.A., Mahran M.H., Shalaby A.M. (2018). Potential alternative treatment of ocular bacterial infections by oil derived from Syzygium aromaticum flower (clove). Current Eye Research. 43: 873-881. [DOI: 10.1080/02713683.2018.1461907] [DOI:10.1080/02713683.2018.1461907] [PMID]
36. Naveed R., Hussain I., Tawab A., Tariq M., Rahman M., Hameed S., Mahmood M.S., Siddique A.B., Iqbal M. (2013). Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria. BMC Complementary and Alternative Medicine. 13: 265. [DOI: 10.1186/1472-6882-13-265] [DOI:10.1186/1472-6882-13-265] [PMID] [PMCID]
37. Ortega-Ramirez L.A., Silva-Espinoza B.A., Vargas-Arispuro I., Gonzalez-Aguilar G.A., Cruz-Valenzuela M.R., Nazzaro F., Ayala-Zavala J.F. (2017). Combination of Cymbopogon citratus and Allium cepa essential oils increased antibacterial activity in leafy vegetables. Journal of Science of Food and Agriculture. 97: 2166-2173. [DOI: 10.1002/jsfa.8025] [DOI:10.1002/jsfa.8025] [PMID]
38. Padalia R.C., Singh V.R., Bhatt G., Chauhan A., Upadhyay R.K., Verma R.S., Chanotiya C.S. (2018). Optimization of harvesting and post-harvest drying methods of Ocimum africanum Lour. for production of quality essential oil. Journal of Essential Oil Research. 30: 437-443. [DOI: 10.1080/10412905.2018.1495110] [DOI:10.1080/10412905.2018.1495110]
39. Pandey A.K., Kumar P., Singh P., Tripathi N.N., Bajpai V.K. (2017). Essential oils: sources of antimicrobials and food preservatives. Frontiers in Microbiology. 7: 2161. [DOI: 10.3389/fmicb.2016.02161] [DOI:10.3389/fmicb.2016.02161] [PMID] [PMCID]
40. Raeisi M., Tabaraei A., Hashemi M., Behnampour N. (2016). Effect of sodium alginate coating incorporated with nisin, Cinnamomum zeylanicum, and rosemary essential oils on microbial quality of chicken meat and fate of Listeria monocytogenes during refrigeration. International Journal of Food Microbiology. 238: 139-145. [DOI: 10.1016/j. ijfoodmicro.2016.08.042] [DOI:10.1016/j.ijfoodmicro.2016.08.042] [PMID]
41. Ramezani-Fard E., Romano N., Goh Y.M., Oskoueian E., Ehteshami F., Ebrahimi M. (2016). The effect of different cooking methods on fatty acid composition and antioxidant activity of n-3 fatty acids fortified tilapia meat with or without clove essential oil. Journal of Environmental Biology. 37: 775-784.
42. Rhayour K., Bouchikhi T., Tantaoui-Elaraki A., Sendide K., Remmal A. (2003). The mechanism of bactericidal action of oregano and clove essential oils and of their phenolic major components on Escherichia coli and Bacillus subtilis. Journal of Essential Oil Research. 15: 356-362. [DOI: 10.1080/10412905.2003.9698611] [DOI:10.1080/10412905.2003.9698611]
43. Rialita T., Rahayu W.P., Nuraida L., Nurtama B. (2015). Aktivitas antimikroba minyak esensial jahe merah (Zingiber officinale var. Rubrum) dan lengkuas merah (Alpinia purpurata K. Schum) terhadap bakteri patogen dan perusak pangan. Agritech. 35: 43-52. [DOI: 10.22146/agritech.9418] [DOI:10.22146/agritech.9418]
44. Sethi S., Dutta A., Gupta B.L., Gupta S. (2013). Antimicrobial activity of spices against isolated food borne pathogens. International Journal of Pharmacy and Pharmaceutical Sciences. 5: 260-262.
45. Tangpao T., Chung H.H., Sommano S.R. (2018). Aromatic profiles of essential oils from five commonly used Thai basils. Foods. 7: 175. [DOI: 10.3390/foods7110175] [DOI:10.3390/foods7110175] [PMID] [PMCID]
46. Toncer O., Karaman S., Diraz E., Sogut T., Kizil S. (2017). Essential oil composition of Thymus × citriodorus (Pers.) Schreb. at different harvest stages. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 45: 185-189. [DOI: 10.15835/ nbha45110672] [DOI:10.15835/nbha45110672]
47. Usai M., Atzei A.D., Marchetti M. (2016). A comparative study on essential oil intraspecific and seasonal variations: Melissa romana Mill. and Melissa officinalis L. from Sardinia. Chemistry and Biodiversity. 13: 1076-1087. [DOI: 10.1002/ cbdv.201500507] [DOI:10.1002/cbdv.201500507] [PMID]
48. Wang G.Y., Wang H.H., Han Y.W., Xing T., Ye K.P., Xu X.L., Zhou G.H. (2017). Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ. Food Microbiology. 63: 139-146. [DOI: 10.1016/j.fm.2016.11.015] [DOI:10.1016/j.fm.2016.11.015] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb