Volume 7, Issue 3 (September 2020)                   J. Food Qual. Hazards Control 2020, 7(3): 136-141 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gaglio R, Botta L, Garofalo G, Guida G, Settanni L, Lopresti F. In vitro Antifungal Activity of Biopolymeric Foam Activated with Carvacrol. J. Food Qual. Hazards Control 2020; 7 (3) :136-141
URL: http://jfqhc.ssu.ac.ir/article-1-695-en.html
Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy , raimondo.gaglio@unipa.it
Abstract:   (1850 Views)
Background: Active packaging represents a defining strategy to improve food quality and safety of the packaged foods. This study aimed to evaluate the in vitro ability of commercial biopolymeric foams, namely Mater-Bi (MB), activated with 20% of carvacrol, to develop a completely biodegradable and compostable packaging to inhibit the growth of spoilage and pathogenic yeasts.
Methods: MB foams, with and without carvacrol, were produced by melt mixing and the foaming process was performed in a laboratory press. The antifungal activity of foams containing carvacrol was tested applying the disk diffusion method. Statistical analysis was done using XLStat software version 7.5.2 for Excel.
Results: Statistically significant differences (p<0.05) were observed between sensitivity of the tested yeasts. Candida zeylanoides 4G362 and Rhodotorula mucilaginosa ICE29 were found to be the most sensitive strains with a clear zone of 28.9±0.1 and 29.0±0.1 mm, respectively. However, Aureobasidium pullulans was the least sensitive yeast strain, showing clear zone of 20.4±0.3 mm.
Conclusion: This study provided, for the first time, an in vitro analysis of the antifungal activity of MB foams activated with carvacrol against yeasts that commonly contaminate raw materials and processed foods. In conclusion, this biopolymer was highly effective against all the yeasts used as indicators strains.

DOI: 10.18502/jfqhc.7.3.4145
Full-Text [PDF 401 kb]   (679 Downloads)    
Type of Study: Original article | Subject: Special
Received: 20/03/17 | Accepted: 20/06/22 | Published: 20/09/22

References
1. Al-Bandak G., Oreopoulou V. (2007). Antioxidant properties and composition of Majorana syriaca extracts. European Journal of Lipid Science and Technology. 109: 247-255. [DOI: 10.1002/ejlt.200600234] [DOI:10.1002/ejlt.200600234]
2. Appendini P., Hotchkiss J.H. (2002). Review of antimicrobial food packaging. Innovative Food Science and Emerging Technologies. 3: 113-126. [DOI: 10.1016/S1466-8564(02)00012-7] [DOI:10.1016/S1466-8564(02)00012-7]
3. Barzegar H., Azizi M.H., Barzegar M., Hamidi-Esfahani Z. (2014). Effect of potassium sorbate on antimicrobial and physical properties of starch-clay nanocomposite films. Carbohydrate Polymers. 110: 26-31. [DOI: 10.1016/j.carbpol.2014.03.092] [DOI:10.1016/j.carbpol.2014.03.092] [PMID]
4. Calo J.R., Crandall P.G., O'Bryan C.A., Ricke S.C. (2015). Essential oils as antimicrobials in food systems-a review. Food Control. 54: 111-119. [DOI: 10.1016/j.foodcont.2014.12.040] [DOI:10.1016/j.foodcont.2014.12.040]
5. Campos-Requena V.H., Rivas B.L., Pérez M.A., Figueroa C.R., Figueroa N.E., Sanfuentes E.A. (2017). Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries-In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biology and Technology. 129: 29-36. [DOI: 10.1016/j.postharvbio.2017.03.005] [DOI:10.1016/j.postharvbio.2017.03.005]
6. Cruciata M., Gaglio R., Scatassa M.L., Sala G., Cardamone C., Palmeri M., Moschetti G., La Mantia T., Settanni L. (2018). Formation and characterization of early bacterial biofilms on different wood typologies applied in dairy production. Applied and Environmental Microbiology. 84: e02107- e02117. [DOI: 10.1128/AEM.02107-17] [DOI:10.1128/AEM.02107-17] [PMID] [PMCID]
7. Debiagi F., Kobayashi R.K.T., Nakazato G., Panagio L.A., Mali S. (2014). Biodegradable active packaging based on cassava bagasse, polyvinyl alcohol and essential oils. Industrial Crops and Products. 52: 664-670. [DOI: 10.1016/j.indcrop.2013.11. 032] [DOI:10.1016/j.indcrop.2013.11.032]
8. Elfehri Borchani K., Carrot C., Jaziri M. (2015). Biocomposites of Alfa fibers dispersed in the Mater-Bi® type bioplastic: morphology, mechanical and thermal properties. Composites Part A: Applied Science and Manufacturing. 78: 371-379. [DOI: 10.1016/j.compositesa.2015.08.023] [DOI:10.1016/j.compositesa.2015.08.023]
9. Gaglio R., Barbera M., Aleo A., Lommatzsch I., La Mantia T., Settanni L. (2017). Inhibitory activity and chemical characterization of Daucus carota subsp. maximus essential oils. Chemistry and Biodiversity. 14: e1600477. [DOI: 10.1002/cbdv. 201600477] [DOI:10.1002/cbdv.201600477] [PMID]
10. Gaglio R., Guarcello R., Barbera M., Lommatzsch I., La Mantia T., Ciminata A., Settanni L. (2019). Chemical composition of essential oils from Pantelleria island autochthonous and naturalized spices and evaluation of their individual and combined antimicrobial activities. Carpathian Journal of Food Science and Technology. 11: 46-59. [DOI: 10.34302/crpjfst/2019.11.2. 4]
11. Gutiérrez L., Escudero A., Battle R., Nerín C. (2009). Effect of mixed antimicrobial agents and flavors in active packaging films. Journal of Agricultural and Food Chemistry. 57: 8564-8571. [DOI: 10.1021/jf901459e] [DOI:10.1021/jf901459e] [PMID]
12. Llana-Ruiz-Cabello M., Pichardo S., Baños A., Núñez C., Bermúdez J.M., Guillamón E., Aucejo S., Cameán A.M. (2015). Characterisation and evaluation of PLA films containing an extract of Allium spp. to be used in the packaging of ready-to-eat salads under controlled atmospheres. LWT-Food Science and Technology. 64: 1354-1361. [DOI: 10.1016/j.lwt. 2015.07.057] [DOI:10.1016/j.lwt.2015.07.057]
13. López P., Sánchez C., Battle R., Nerín C. (2007). Development of flexible antimicrobial films using essential oils as active agents. Journal of Agricultural and Food Chemistry. 55: 8814-8824. [DOI: 10.1021/jf071737b] [DOI:10.1021/jf071737b] [PMID]
14. Lopresti F., Botta L., Scaffaro R., Bilello V., Settanni L., Gaglio R. (2019). Antibacterial biopolymeric foams: structure-property relationship and carvacrol release kinetics. European Polymer Journal. 121: 109298. [DOI: 10.1016/j.eurpolymj.2019. 109298] [DOI:10.1016/j.eurpolymj.2019.109298]
15. Nostro A., Papalia T. (2012). Antimicrobial activity of carvacrol: current progress and future prospectives. Recent Patents on Anti-Infective Drug Discovery. 7: 28-35. [DOI: 10.2174/ 157489112799829684] [DOI:10.2174/157489112799829684] [PMID]
16. Novak Babič M., Zalar P., Ženko B., Schroers H.J., Džeroski S., Gunde-Cimerman N. (2015). Candida and Fusarium species known as opportunistic human pathogens from customer-accessible parts of residential washing machines. Fungal Biology. 119: 95-113. [DOI: 10.1016/j.funbio.2014.10.007] [DOI:10.1016/j.funbio.2014.10.007] [PMID]
17. Palmeira-de-Oliveira A., Salgueiro L., Palmeira-de-Oliveira R., Martinez-de-Oliveira J., Pina-Vaz C., Queiroz J.A., Rodrigues A.G. (2009). Anti-Candida activity of essential oils. Mini-Reviews in Medicinal Chemistry. 9: 1292-1305. [DOI: 10.2174/138955709789878150] [DOI:10.2174/138955709789878150] [PMID]
18. Qvirist L.A., De Filippo C., Strati F., Stefanini I., Sordo M., Andlid T., Felis G.E., Mattarelli P., Cavalieri D. (2016). Isolation, identification and characterization of yeasts from fermented goat milk of the Yaghnob Valley in Tajikistan. Frontiers in Microbiology. 7: 1690. [DOI: 10.3389/fmicb.2016.01690] [DOI:10.3389/fmicb.2016.01690] [PMID] [PMCID]
19. Ramos M., Jiménez A., Peltzer M., Garrigós M.C. (2012). Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. Journal of Food Engineering. 109: 513-519. [DOI: 10.1016/j.jfoodeng. 2011.10.031] [DOI:10.1016/j.jfoodeng.2011.10.031]
20. Requena R., Jiménez A., Vargas M., Chiralt A. (2016). Poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] active bilayer films obtained by compression moulding and applying essential oils at the interface. Polymer International. 65: 883-891. [DOI:10.1002/pi.5091] [DOI:10.1002/pi.5091]
21. Rodríguez A., Batlle R., Nerín C. (2007). The use of natural essential oils as antimicrobial solutions in paper packaging. Part II. Progress in Organic Coatings. 60: 33-38. [DOI: 10.1016/j. porgcoat.2007.06.006] [DOI:10.1016/j.porgcoat.2007.06.006]
22. Rojas-Graü M.A., Avena-Bustillos R.J., Olsen C., Friedman M., Henika P.R., Martín-Belloso O., Pan Z., McHugh T.H. (2007). Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate-apple puree edible films. Journal of Food Engineering. 81: 634-641. [DOI: 10.1016/j.jfoodeng.2007.01.007] [DOI:10.1016/j.jfoodeng.2007.01.007]
23. Ruan S.Y., Chien J.Y., Hou Y.C., Hsueh P.R. (2010). Catheter-related fungemia caused by Candida intermedia. International Journal of Infectious Diseases. 14: e147-e149. [DOI: 10.1016/j.ijid.2009.03.015] [DOI:10.1016/j.ijid.2009.03.015] [PMID]
24. Scaffaro R., Maio A., Lopresti F. (2018). Physical properties of green composites based on poly-lactic acid or Mater-Bi® filled with Posidonia oceanica leaves. Composites Part A: Applied Science and Manufacturing. 112: 315-327. [DOI: 10.1016/j.compositesa.2018.06.024] [DOI:10.1016/j.compositesa.2018.06.024]
25. Seydim A.C., Sarikus G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International. 39: 639-644. [DOI: 10.1016/j.foodres.2006.01.013] [DOI:10.1016/j.foodres.2006.01.013]
26. Song N.B., Lee J.H., Al Mijan M., Song K.B. (2014). Development of a chicken feather protein film containing clove oil and its application in smoked salmon packaging. LWT-Food Science and Technology. 57: 453-460. [DOI: 10.1016/j.lwt.2014.02. 009] [DOI:10.1016/j.lwt.2014.02.009]
27. Souza A.C., Goto G.E.O., Mainardi J.A., Coelho A.C.V., Tadini C.C. (2013). Cassava starch composite films incorporated with cinnamon essential oil: antimicrobial activity, microstructure, mechanical and barrier properties. LWT-Food Science and Technology. 54: 346-352. [DOI: 10.1016/j.lwt.2013.06.017] [DOI:10.1016/j.lwt.2013.06.017]
28. Synowiec A., Gniewosz M., Kraśniewka K., Przybył J.L., Baczek K., Węglarz Z. (2014). Antimicrobial and antioxidant properties of pullulan film containing sweet basil extract and an evaluation of coating effectiveness in the prolongation of the shelf life of apples stored at refrigeration conditions. Innovative Food Science and Emerging Technologies. 23: 171-181. [DOI: 10.1016/j.ifset.2014.03.006] [DOI:10.1016/j.ifset.2014.03.006]
29. Tang X., Shao Y.L., Tang Y.J., Zhou W.W. (2018). Antifungal activity of essential oil compounds (geraniol and citral) and inhibitory mechanisms on grain pathogens (Aspergillus flavus and Aspergillus ochraceus). Molecules. 23: 2108. [DOI: 10.3390/molecules23092108] [DOI:10.3390/molecules23092108] [PMID] [PMCID]
30. Van't Wout J.W. (1996). Fluconazole treatment of candidal infections caused by non-albicans Candida species. European Journal of Clinical Microbiology and Infectious Diseases. 15: 238-242. [DOI: 10.1007/BF01591361] [DOI:10.1007/BF01591361] [PMID]
31. Wen P., Zhu D.H., Feng K., Liu F.J., Lou W.Y., Li N., Zong M.H., Wu H. (2016). Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chemistry. 196: 996-1004. [DOI: 10.1016/j.foodchem.2015.10.043] [DOI:10.1016/j.foodchem.2015.10.043] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb