Volume 7, Issue 3 (September 2020)                   J. Food Qual. Hazards Control 2020, 7(3): 142-148 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Banda R, Nduko J, Matofari J. Bacterial Biofilm Formation in Milking Equipments in Lilongwe, Malawi. J. Food Qual. Hazards Control 2020; 7 (3) :142-148
URL: http://jfqhc.ssu.ac.ir/article-1-738-en.html
Department of Dairy and Food Science and Technology, Egerton University, P. O. Box 536-20115, Egerton, Kenya , jnduko@egerton.ac.ke
Abstract:   (1881 Views)
Background: Some microorganisms can adhere to food handling surfaces forming biofilms that pose a safety challenge. This study was done to evaluate bacterial biofilm formation in milking equipments in Lilongwe, Malawi.
Methods: Pooled milk (n=54) and water (n=60) samples were collected from households and milk bulking groups in Lilongwe, Malawi. Swabbing (n=46) and rinsing (n=16) were done on milk handling containers after cleaning. Biofilm determination on the containers was done by detecting biofilm indicator bacteria, including Bacillus spp., Salmonella spp., and Pseudomonas spp. The strength of biofilm was determined by the tube method. Data were analyzed by SAS software version 9.1.3.  
Results: Prevalence rates of Gram-negative rods were significantly (p<0.05) higher than the Gram-positive rods and the Gram-positive cocci. Of the 176 cases, contamination rates were 36 (20.4%), 32 (18.2%), and 18 (10.2%) for Salmonella spp., Bacillus spp., and Pseudomonas spp., respectively. The biofilm indicator organisms were significantly (p<0.05) more prevalent in dairy farmer households compared with the milk bulking centers. Fourteen out of 86 (16.3%) microbial isolates formed strong/high biofilms, whereas 18 out of 86 (20.93%) of isolates did not form any biofilm. The rate of isolates forming strong/high biofilms in households (17.6%) was significantly (p<0.05) higher than that of milk bulking centers (11.1%).
Conclusion: Biofilm formation on milk handling container surfaces in Lilongwe, Malawi could serve as a source of microbial pathogens and spoilage organisms.

DOI: 10.18502/jfqhc.7.3.4146
Full-Text [PDF 331 kb]   (827 Downloads)    
Type of Study: Original article | Subject: Special
Received: 20/05/16 | Accepted: 20/08/02 | Published: 20/09/22

References
1. Abdallah M., Benoliel C., Drider D., Dhulster P., Chihib N.E. (2014). Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Archives of Microbiology. 196: 453-472. [DOI: 10.1007/s00203-014-0983-1] [DOI:10.1007/s00203-014-0983-1] [PMID]
2. Banda R.F.D., Matofari J.W., Nduko J.M. (2019). Hygienic practices and microbiological quality of milk from peri-urban dairy farmers and bulking centers in Lilongwe, Malawi. Bulletin of Animal Health and Production in Africa. 67: 79-90.
3. Boor K.J., Wiedmann M., Murphy S., Alcaine S. (2017). A 100-year review: microbiology and safety of milk handling. Journal of Dairy Science. 100: 9933-9951. [DOI: 10.3168/jds. 2017-12969] [DOI:10.3168/jds]
4. Bridier A., Briandet R., Thomas V., Dubois-Brissonnet F. (2011). Resistance of bacterial biofilms to disinfectants : a review. Biofouling. 27: 1017-1032. [DOI: 10.1080/08927014.2011. 626899] [DOI:10.1080/08927014.2011.626899] [PMID]
5. Chmielewski R.A.N., Frank J.F. (2003). Biofilm formation and control in food processing facilities. Comprehensive Reviews in Food Science and Food Safety. 2: 22-32. [DOI: 10.1111/j. 1541-4337.2003.tb00012.x] [DOI:10.1111/j.1541-4337.2003.tb00012.x]
6. Cruz K.L., Da Motta A.D.S. (2019). Characterization of biofilm production by Pseudomonas fluorescens isolated from refrigerated raw buffalo milk. Journal of Food Science and Technology. 56: 4595-4604. [DOI: 10.1007/s13197-019-03924-1] [DOI:10.1007/s13197-019-03924-1] [PMID]
7. Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). (2014). Online data resource. Rome: Food and Agriculture Organisation of the United Nations. URL: www.fao.org/faostat/en/#data/QL. Accessed 26 June 2019.
8. Guilhen C., Forestier C., Balestrino D. (2017). Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties. Molecular Microbiology. 105: 188-210. [DOI: 10.1111/mmi.13698] [DOI:10.1111/mmi.13698] [PMID]
9. Jindal S., Anand S., Metzger L., Amamcharla J. (2018). A comparison of biofilm development on stainless steel and modified-surface plate heat exchangers during a 17-h milk pasteurization run. Journal of Dairy Science. 101: 2921-2926. [DOI: 10.3168/jds.2017-14028] [DOI:10.3168/jds.2017-14028] [PMID]
10. Ksontini H., Kachouri F., Hamdi M. (2013). Dairy biofilm: impact of microbial community on raw milk quality. Journal of Food Quality. 36: 282-290. [DOI: 10.1111/jfq.12036] [DOI:10.1111/jfq.12036]
11. Latorre A.A., Van Kessel J.S., Karns J.S., Zurakowski M.J., Pradhan A.K., Boor K.J., Jayarao B.M., Houser B.A., Daugherty C.S., Schukken Y.H. (2010). Biofilm in milking equipment on a dairy farm as a potential source of bulk tank milk contamination with Listeria monocytogenes. Journal of Dairy Science. 93: 2792-2802. [DOI: 10.3168/jds.2009-2717] [DOI:10.3168/jds.2009-2717] [PMID]
12. Liu D.Z., Jindal S., Amamcharla J., Anand S., Metzger L. (2017). Evaluation of a sol-gel-based stainless steel surface modification to reduce fouling and biofilm formation during pasteurization of milk. Journal of Dairy Science. 100: 2577-2581. [DOI: 10.3168/jds.2016-12141] [DOI:10.3168/jds.2016-12141] [PMID]
13. Marchand S., De Block J., De Jonghe V., Coorevits A., Heyndrickx M., Herman L. (2012). Biofilm formation in milk production and processing environments; influence on milk quality and safety. Comprehensive Reviews in Food Science and Food Safety. 11: 133-147. [DOI: 10.1111/j.1541-4337.2011.00183. x] [DOI:10.1111/j.1541-4337.2011.00183.x]
14. Meesilp N., Mesil N. (2019). Effect of microbial sanitizers for reducing biofilm formation of Staphylococcus aure-us and Pseudomonas aeruginosa on stainless steel by cultivation with UHT milk. Food Science and Biotechnology. 28: 289-296. [DOI: 10.1007/s10068-018-0448-4] [DOI:10.1007/s10068-018-0448-4] [PMID] [PMCID]
15. Mohamed A., Rajaa A.M., Khalid Z., Fouad M., Naima R. (2016). Comparison of three methods for the detection of biofilm formation by clinical isolates of Staphylococcus aureus isolated in Casablanca. International Journal of Sciennce and Research. 5: 1156-1159. [DOI: 10.21275/ART20162319]
16. Oliveira G.S., Lopes D.R.G., Andre C., Silva C.C., Baglinière F., Vanetti M.C.D. (2019). Multispecies biofilm formation by the contaminating microbiota in raw milk. Biofouling. 35: 819-831. [DOI: 10.1080/08927014.2019.1666267] [DOI:10.1080/08927014.2019.1666267] [PMID]
17. Orwa J.D., Matofari J.W., Muliro P.S. (2017). Handling practices and microbial contamination sources of raw milk in rural and peri urban small holder farms in Nakuru County, Kenya. International Journal of Livestock Production. 8: 5-11. [DOI: 10.5897/ IJLP2016.0318] [DOI:10.5897/IJLP2016.0318]
18. Osman K.M., Zolnikov T.R., Samir A., Orabi A. (2014). Prevalence, pathogenic capability, virulence genes, biofilm formation, and antibiotic resistance of Listeria in goat and sheep milk confirms need of hygienic milking conditions. Pathogens and Global Health. 108: 21-29. [DOI: 10.1179/ 2047773213Y.0000000115] [DOI:10.1179/2047773213Y.0000000115] [PMID] [PMCID]
19. Oulahal-Lagsir N., Martial-Gros A., Bonneau M., Blum L.J. (2003). "Escherichia coli-milk" biofilm removal from stainless steel surfaces: synergism between ultrasonic waves and enzymes. Biofueling. 19: 159-168. [DOI:10.1080/08927014. 2003.10382978] [DOI:10.1080/08927014.2003.10382978] [PMID]
20. Pantoja J.C.F., Reinemann D.J., Ruegg P.L. (2011). Factors associated with coliform count in unpasteurized bulk milk. Journal of Dairy Science. 94: 2680-2691. [DOI: 10.3168/jds.2010-3721] [DOI:10.3168/jds.2010-3721] [PMID]
21. Pasvolsky R., Zakin V., Ostrova I., Shemesh M. (2014). Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species. International Journal of Food Microbiology. 181: 19-27. [DOI: 10.1016/j.ijfoodmicro.2014.04.013] [DOI:10.1016/j.ijfoodmicro.2014.04.013] [PMID]
22. Paz-Méndez A.M., Lamas A., Vázquez B., Miranda J.M., Cepeda A., Franco C.M. (2017). Effect of food residues in biofilm formation on stainless steel and polystyrene surfaces by Salmonella enterica strains isolated from poultry houses. Foods. 6: 106. [DOI: 10.3390/foods6120106] [DOI:10.3390/foods6120106] [PMID] [PMCID]
23. Roberts D., Greenwood M. (2002). Practical food microbiology. 3rd edition. Blackwell Publishing Inc., Massachusetts. pp: 193-218. [DOI:10.1016/S0168-1605(01)00738-3]
24. Saha R., Arora S., Das S., Gupta C., Maroof K.A., Singh N.P., Kaur I.R. (2014). Detection of biofilm formation in urinary isolates: need of the hour. Journal of Research in Biology. 4: 1174- 1181.
25. Schmidt R.H., Erickson D.J. (2005). Sanitary design and construction of food equipment. Food Science and Human Nutrition Department, University of Florida/The Institute of Food and Agricultural Sciences. No. FSHN0409.
26. Silva I.D., Careli R.T., Lima J.C., Andrade N.J. (2010). Effectiveness of cleaning and sanitizing procedures in controlling the adherence of Pseudomonas fluorescens, Salmonella Enteritidis, and Staphylococcus aureus to domestic kitchen surfaces. Ciência e Tecnologia de Alimentos. 30: 231-236. [DOI: 10.1590/S0101-20612010005000015] [DOI:10.1590/S0101-20612010005000015]
27. Simoes M., Simões L.C., Vieira M.J. (2010). A review of current and emergent biofilm control strategies. LWT-Food Science and Technology. 43: 573-583. [DOI: 10.1016/j.lwt.2009.12. 008] [DOI:10.1016/j.lwt.2009.12.008]
28. Sindani G.W. (2012). The dairy industry in Malawi: a description of the milk bulking groups in Malawi. North Carolina State University.
29. Wafula W.N., Matofari W.J., Nduko J.M., Lamuka P. (2016). Effectiveness of the sanitation regimes used by dairy actors to control microbial contamination of plastic jerry cans' surfaces. International Journal of Food Contamination. 3: 9. [DOI: 10.1186/s40550-016-0032-8] [DOI:10.1186/s40550-016-0032-8]
30. Wanjala W.N., Nduko J.M., Mwende M.C. (2018). Coliforms contamination and hygienic status of milk chain in emerging economies. Journal of Food Quality and Hazards Control. 5: 3-10. [DOI: 10.29252/jfqhc.5.1.3] [DOI:10.29252/jfqhc.5.1.3]
31. World Health Organization (WHO). (2010). Laboratory Protocol "Isolation of Salmonella spp. From Food and Animal Faeces". WHO Global Foodborne Infections Network, 5th edition. URL: http://antimicrobialresistance.dk/CustomerData/Files/Folders/6-pdf-protocols/63_18-05-isolation-of-salm-220610.pdf.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb