Volume 8, Issue 3 (September 2021)                   J. Food Qual. Hazards Control 2021, 8(3): 131-139 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Makumbe H, Tabit F, Dlamini B. Prevalence, Molecular Identification, Antimicrobial Resistance, and Disinfectant Susceptibility of Listeria innocua Isolated from Ready-to-Eat Foods Sold in Johannesburg, South Africa. J. Food Qual. Hazards Control 2021; 8 (3) :131-139
URL: http://jfqhc.ssu.ac.ir/article-1-842-en.html
Department of Life and Consumer Sciences, University of South Africa, Cnr Christiaan de Wet Road and Pioneer Avenue, Florida, Roodepoort 1710, Johannesburg, South Africa , tabitft@unisa.ac.za
Abstract:   (15556 Views)
Background: Food contamination with Listeria spp. can occur at all stages of the food chain. The aim of this research was to investigate the prevalence, molecular identification, antimicrobial resistance, and disinfectant susceptibility of Listeria innocua isolated from Ready-To-Eat (RTE) foods sold in Johannesburg, South Africa.
Methods: Eighty RTE foods were collected from Johannesburg, South Africa. The 16S rRNA region of L. innocua isolates was amplified, sequenced, and identified using Basic Alignment Search Tool (BLAST). The antimicrobial resistance and disinfectant susceptibility (against four commercial disinfectants) of the isolates were evaluated using disk diffusion and microdilution assays. Data were statistically analyzed using SPSS v. 23.0.
Results: Listeria strains revealed a high 16S rRNA gene sequence analogy to L. innocua of between 98-99%. The overall prevalence of L. innocua was 21.3% (17 out of 80) in the RTE food samples. Most isolates were susceptible to the studied commercial disinfectants. All the L. innocua isolates from food sources were found to be resistant to ampicillin and cephalothin, while 83 and 74% of isolates were resistant to colistin sulphate and sulphatriad.
Conclusion: Prevalence of L. innocua was considerable in the RTE food samples sold in Johannesburg, South Africa. The L. innocua isolates showed high antibiotic resistance against ampicillin, cephalothin, colistin sulphate, and sulphatriad.

DOI: 10.18502/jfqhc.8.3.7200
Full-Text [PDF 562 kb]   (467 Downloads)    
Type of Study: Original article | Subject: Special
Received: 21/04/07 | Accepted: 21/07/24 | Published: 21/09/29

References
1. Adzitey F., Huda N., Ali G.R.R. (2013). Molecular techniques for detecting and typing of bacteria, advantages and application to foodborne pathogens isolated from ducks. 3 Biotech. 3: 97-107. [DOI: 10.1007/s13205-012-0074-4] [DOI:10.1007/s13205-012-0074-4] [PMID] [PMCID]
2. Alles A.A., Wiedmann M., Martin N.H. (2018). Rapid detection and characterization of postpasteurization contaminants in pasteurized fluid milk. Journal of Dairy Science. 101: 7746-7756. [DOI: 10.3168/jds.2017-14216] [DOI:10.3168/jds.2017-14216] [PMID]
3. Arslan S., Özdemir F. (2020). Prevalence and antimicrobial resistance of Listeria species and molecular characterization of Listeria monocytogenes isolated from retail ready-to-eat foods. FEMS Microbiology Letters. 367. [DOI: 10.1093/femsle/ fnaa006] [DOI:10.1093/femsle/fnaa006] [PMID]
4. Benkova M., Soukup O., Marek J. (2020). Antimicrobial susceptibility testing: currently used methods and devices and the near future in clinical practice. Journal of Applied Microbiology. 129: 806-822. [DOI: 10.1111/jam.14704] [DOI:10.1111/jam.14704] [PMID]
5. Carvalho F.T., Vieira B.S., Vallim D.C., Carvalho L.A., Carvalho R.C.T., Pereira R.C.L., Figueiredo E.E.S. (2019). Genetic similarity, antibiotic resistance and disinfectant susceptibility of Listeria monocytogenes isolated from chicken meat and chicken-meat processing environment in Mato Grosso, Brazil. LWT. 109: 77-82. [DOI: 10.1016/j.lwt.2019.03.099] [DOI:10.1016/j.lwt.2019.03.099]
6. Chin P.S., Ang G.Y., Yu C.Y., Tan E.L., Tee K.K., Yin W.F., Chan K.G., tan G.Y.A. (2018). Prevalence, antimicrobial resistance, and genetic diversity of Listeria spp. isolated from raw chicken meat and chicken-related products in Malaysia. Journal of Food Protection. 81: 284-289. [DOI: 10.4315/ 0362-028X.JFP-17-186]. [DOI:10.4315/0362-028X.JFP-17-186] [PMID]
7. Costa A., Lourenco A., Civera T., Brito L. (2018). Listeria innocua and Listeria monocytogenes strains from dairy plants behave similarly in biofilm sanitizer testing. LWT. 92: 477-483. [DOI: 10.1016/j.lwt.2018.02.073] [DOI:10.1016/j.lwt.2018.02.073]
8. Dos Santos H.R.M., Argolo C.S., Argôlo-Filho R.C., Loguercio L.L. (2019). A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC Microbiology. 19: 74. [DOI: 10.1186/s12866-019-1446-2] [DOI:10.1186/s12866-019-1446-2] [PMID] [PMCID]
9. Escolar C., Gómez D., Garcίa M.D.C.R., Conchello P., Herrera A. (2017). Antimicrobial resistance profiles of Listeria monocytogenes and Listeria innocua isolated from ready-to-eat products of animal origin in Spain. Foodborne Pathogens and Disease. 14: 357-363. [DOI: 10.1089/fpd.2016.2248] [DOI:10.1089/fpd.2016.2248] [PMID]
10. European Committee on Antimicrobial Susceptibility Testing (EUCAST). (2021). Development and validation of EUCAST disk diffusion breakpoints. Staphylococcus aureus. URL: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_criteria/Validation_2021/S._aureus_v_8.0_June_2021.pdf.
11. Fagerlund A., Langsrud S., Møretrø T. (2021). Microbial diversity and ecology of biofilms in food industry environments associated with Listeria monocytogenes persistence. Current Opinion in Food Science. 37: 171-178. [DOI: 10.1016/j.cofs. 2020.10.015] [DOI:10.1016/j.cofs.2020.10.015]
12. Fox E.M., Wall P.G., Fanning S. (2015). Control of Listeria species food safety at a poultry food production facility. Food Microbiology. 51: 81-86. [DOI: 10.1016/j.fm.2015.05.002] [DOI:10.1016/j.fm.2015.05.002] [PMID]
13. Gómez D., Azón E., Marco N., Carramiñana J.J., Rota C., Ariño A., Yangüela J. (2014). Antimicrobial resistance of Listeria monocytogenes and Listeria innocua from meat products and meat-processing environment. Food Microbiology. 42: 61-65. [DOI: 10.1016/j.fm.2014.02.017] [DOI:10.1016/j.fm.2014.02.017] [PMID]
14. Heir E., Sundheim G., Holck A.L. (1995). Resistance to quaternary ammonium compounds in Staphylococcus spp. isolated from the food industry and nucleotide sequence of the resistance plasmid pST827. Journal of Applied Microbiology. 79: 149-156. [DOI: 10.1111/j.1365-2672.1995.tb00928.x] [DOI:10.1111/j.1365-2672.1995.tb00928.x] [PMID]
15. Hombach M., Zbinden R., Böttger E.C. (2013). Standardisation of disk diffusion results for antibiotic susceptibility testing using the sirscan automated zone reader. BMC Microbiology. 13: 225. [DOI: 10.1186/1471-2180-13-225] [DOI:10.1186/1471-2180-13-225] [PMID] [PMCID]
16. Hua Z., Younce F., Tang J., Ryu D., Rasco B., Hanrahan I., Zhu M.-J. (2021). Efficacy of saturated steam against Listeria innocua biofilm on common food-contact surfaces. Food Control. 125: 107988. [DOI: 10.1016/j.foodcont.2021.107988] [DOI:10.1016/j.foodcont.2021.107988]
17. International Organization for Standardization (ISO). (2017). Microbiology of the food chain-horizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp. -Part 1: detection method (ISO 11290-1:2017). URL: https://www.iso.org/standard/60313.html.
18. Jamali H., Radmehr B., Thong K.L. (2013). Prevalence, characterisation, and antimicrobial resistance of Listeria species and Listeria monocytogenes isolates from raw milk in farm bulk tanks. Food Control. 34: 121-125. [DOI: 10.1016/j.foodcont. 2013.04.023] [DOI:10.1016/j.foodcont.2013.04.023]
19. Jorgensen J., Bland R., Waite-Cusic J., Kovacevic J. (2021). Diversity and antimicrobial resistance of Listeria spp. and L. monocytogenes clones from produce handling and processing facilities in the Pacific Northwest. Food Control. 123: 107665. [DOI: 10.1016/j.foodcont.2020.107665] [DOI:10.1016/j.foodcont.2020.107665]
20. Jung Y., Gao J., Jang H., Guo M., Matthews K.R. (2017). Sanitizer efficacy in preventing cross-contamination during retail preparation of whole and fresh-cut cantaloupe. Food Control. 75: 228-235. [DOI: 10.1016/j.foodcont.2016.12.009] [DOI:10.1016/j.foodcont.2016.12.009]
21. Kastbjerg V.G., Gram L. (2012). Industrial disinfectants do not select for resistance in Listeria monocytogenes following long term exposure. International Journal of Food Microbiology. 160: 11-15. [DOI: 10.1016/j.ijfoodmicro.2012.09.009] [DOI:10.1016/j.ijfoodmicro.2012.09.009] [PMID]
22. Korsak D., Szuplewska M. (2016). Characterization of nonpathogenic Listeria species isolated from food and food processing environment. International Journal of Food Microbiology. 238: 274-280. [DOI: 10.1016/j.ijfoodmicro.2016.08.032] [DOI:10.1016/j.ijfoodmicro.2016.08.032] [PMID]
23. Kumar A., Pal D. (2018). Antibiotic resistance and wastewater: correlation, impact and critical human health challenges. Journal of Environmental Chemical Engineering. 6: 52-58. [DOI: 10.1016/j.jece.2017.11.059] [DOI:10.1016/j.jece.2017.11.059]
24. Kumar S., Stecher G., Tamura K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 33: 1870-1874. [DOI: 10.1093/molbev/msw054] [DOI:10.1093/molbev/msw054] [PMID] [PMCID]
25. Lakicevic B., Nastasijevic I., Raseta M. (2015). Sources of Listeria Monocytogenes contamination in retail establishments. Procedia Food Science. 5: 160-163. [DOI: 10.1016/j.profoo. 2015.09.046] [DOI:10.1016/j.profoo.2015.09.046]
26. Lane D.J. (1991). 16S/23S rRNA sequencing. In: Stackebrandt E., Goodfellow M. (Editors), Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York. pp: 115-175
27. Lundén J., Autio T., Markkula A., Hellström S., Korkeala H. (2003). Adaptive and cross-adaptive responses of persistent and non-persistent Listeria monocytogenes strains to disinfectants. International Journal of Food Microbiology. 82: 265-272. [DOI: 10.1016/S0168-1605(02)00312-4] [DOI:10.1016/S0168-1605(02)00312-4]
28. Mc Carlie S., Boucher C.E., Bragg R.R. (2020). Molecular basis of bacterial disinfectant resistance. Drug Resistance Updates. 48: 100672. [DOI: 10.1016/j.drup.2019.100672] [DOI:10.1016/j.drup.2019.100672] [PMID]
29. McDonnell G., Russell A.D. (1999). Antiseptics and disinfectants: activity, action, and resistance. Clinical Microbiology Reviews. 12: 147-179. [DOI: 10.1128/CMR.12.1.147] [DOI:10.1128/CMR.12.1.147] [PMID] [PMCID]
30. Minarovičová J., Véghová A., Mikulášová M., Chovanová R., Šoltýs K., Drahovská H., Kaclíková E. (2018). Benzalkonium chloride tolerance of Listeria monocytogenes strains isolated from a meat processing facility is related to presence of plasmid-borne bcrABC cassette. Antonie van Leeuwenhoek. 111: 1913-1923. [DOI: 10.1007/s10482-018-1082-0] [DOI:10.1007/s10482-018-1082-0] [PMID]
31. Nyhan L., Johnson N., Begley M., O'Leary P., Callanan M. (2020). Comparison of predicted and impedance determined growth of Listeria innocua in complex food matrices. Food Microbiology. 87: 103381. [DOI: 10.1016/j.fm.2019.103381] [DOI:10.1016/j.fm.2019.103381] [PMID]
32. Ochiai Y., Yamada F., Mochizuki M., Takano T., Hondo R., Ueda F. (2014). Biofilm formation under different temperature conditions by a single genotype of persistent Listeria monocytogenes strains. Journal of Food Protection. 77: 133-140. [DOI: 10.4315/0362-028X.JFP-13-074] [DOI:10.4315/0362-028X.JFP-13-074] [PMID]
33. Osaili T.M., Alaboudi A.R., Nesiar E.A. (2011). Prevalence of Listeria spp. and antibiotic susceptibility of Listeria monocytogenes isolated from raw chicken and ready-to-eat chicken products in Jordan. Food Control. 22: 586-590. [DOI: 10.1016/j.foodcont.2010.10.008] [DOI:10.1016/j.foodcont.2010.10.008]
34. Roca I., Akova M., Baquero F., Carlet J., Cavaleri M., Coenen S., Cohen J., Findlay D., Gyssens I., Heuer O.E., Kahlmeter G., Kruse H., et al. (2015). The global threat of anti-microbial resistance: science for intervention. New Microbes and New Infections. 6: 22-29. [DOI: 10.1016/j.nmni.2015.02.007] [DOI:10.1016/j.nmni.2015.02.007] [PMID] [PMCID]
35. Rodrigues C.S., De Sá C.V.G.C., De Melo C.B. (2017). An overview of Listeria monocytogenes contamination in ready to eat meat, dairy and fishery foods. Ciência Rural. 47: e20160721. [DOI: 10.1590/0103-8478cr20160721] [DOI:10.1590/0103-8478cr20160721]
36. Ruiz-Bolivar Z., Neuque-Rico M.C., Poutou-Piñales R.A., Carrascal-Camacho A.K., Mattar S. (2011). Antimicrobial susceptibility of Listeria monocytogenes food isolates from different cities in Colombia. Foodborne Pathogens and Disease. 8: 913-919. [DOI: 10.1089/fpd.2010.0813] [DOI:10.1089/fpd.2010.0813] [PMID]
37. Sauders B.D., Overdevest J., Fortes E., Windham K., Schukken Y., Lembo A., Wiedmann M. (2012). Diversity of Listeria species in urban and natural environments. Applied and Environmental Microbiology. 78: 4420-4433. [DOI: 10.1128/ AEM.00282-12] [DOI:10.1128/AEM.00282-12] [PMID] [PMCID]
38. Shourav A.H., Hasan M., Ahmed S. (2020). Antibiotic susceptibility pattern of Listeria spp. isolated from cattle farm environment in Bangladesh. Journal of Agriculture and Food Research. 2: 100082. [DOI: 10.1016/j.jafr.2020.100082] [DOI:10.1016/j.jafr.2020.100082]
39. Soni D.K., Dubey S.K. (2014). Phylogenetic analysis of the Listeria monocytogenes based on sequencing of 16S rRNA and hlyA genes. Molecular Biology Reports. 41: 8219-8229. [DOI: 10.1007/s11033-014-3724-2] [DOI:10.1007/s11033-014-3724-2] [PMID]
40. Tabit F.T., Komolafe N.T., Tshikalange T.E., Nyila M.A. (2016). Phytochemical constituents and antioxidant and antimicrobial activity of selected plants used traditionally as a source of food. Journal of Medicinal Food. 19: 324-329. [DOI: 10.1089/jmf.2015.0099] [DOI:10.1089/jmf.2015.0099] [PMID]
41. Turner S., Pryer K.M., Miao V.P.W., Palmer J.D. (1999). Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology. 46: 327-338. [DOI: 10.1111/j.1550-7408.1999.tb04612.x] [DOI:10.1111/j.1550-7408.1999.tb04612.x] [PMID]
42. Usman U.B., Kwaga J.K.P., Kabir J., Olonitola O.S., Radu S., Bande F. (2016). Molecular characterization and phylogenetic analysis of Listeria monocytogenes isolated from milk and milk products in Kaduna, Nigeria. Canadian Journal of Infectious Diseases and Medical Microbiology. 2016. [DOI: 10.1155/2016/4313827] [DOI:10.1155/2016/4313827] [PMID] [PMCID]
43. Von Holy A., Makhoane F.M. (2006). Improving street food vending in South Africa: achievements and lessons learned. International Journal of Food Microbiology. 111: 89-92. [DOI: 10.1016/j.ijfoodmicro.2006.06.012] [DOI:10.1016/j.ijfoodmicro.2006.06.012] [PMID]
44. Walsh D., Duffy G., Sheridan J.J., Blair I.S., McDowell D.A. (2001). Antibiotic resistance among Listeria, including Listeria monocytogenes, in retail foods. Journal of Applied Microbiology. 90: 517-522. [DOI: 10.1046/j.1365-2672.2001. 01273.x] [DOI:10.1046/j.1365-2672.2001.01273.x] [PMID]
45. Xu D., Deng Y., Fan R., Shi L., Bai J., Yan H. (2019). Coresistance to benzalkonium chloride disinfectant and heavy metal ions in Listeria monocytogenes and Listeria innocua swine isolates from China. Foodborne Pathogens and Disease. 16: 696-703. [DOI: 10.1089/fpd.2018.2608] [DOI:10.1089/fpd.2018.2608] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb