Volume 9, Issue 1 (March 2022)                   J. Food Qual. Hazards Control 2022, 9(1): 3-13 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Francis B, Antony A, Sukumaran D, Hatha A. Prevalence, Antimicrobial Resistance, and Molecular Characterization of Escherichia coli Isolated from Food Contact Surfaces in Seafood Pre-Processing Plants (India). J. Food Qual. Hazards Control 2022; 9 (1) :3-13
URL: http://jfqhc.ssu.ac.ir/article-1-922-en.html
Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Lakeside Campus, Cochin-682 016, Kerala, India , mohamedhatha@cusat.ac.in
Abstract:   (956 Views)
Background: The survival of pathogens in biofilms poses a threat to food safety. The aim of this study was to determine prevalence, antimicrobial resistance, and molecular characterization of Escherichia coli strains.
Methods: Swab samples (n=144) were collected from biofilm formed on food contact surfaces in seafood pre-processing plant in India. E. coli was isolated and identified using uid A gene by Polymerase Chain Reaction (PCR). The risk assessment of the isolates was carried out in terms of their drug resistance and the presence of virulence genes. Antimicrobial susceptibility testing was performed using the Kirby-Bauer disk diffusion method. Phylogenetic grouping was done by quadruplex PCR. Molecular typing of the strains was performed by Enterobacterial Repetitive Intergenic Consensus-PCR (ERIC-PCR). Data were statistically analyzed using SPSS version 22.
Results: Enteropathogenic E. coli (EPEC) strains were the most prevalent serotype. Multiplex PCR analysis revealed the presence of shiga toxin genes (stx1, stx2), intimin (eae), and enterohemolysin genes (hlyA). Shiga toxin gene stx2 showed the highest prevalence (83.33%). Among various phylogroups, B1 (45.56%) and B2 (30%) were the most prevalent phylogroups. Resistance to ampicillin (85.56%), piperacillin (84.44%), and cefpodoxime (85.56%) was widespread among the E. coli strains.
Conclusion: The presence of genetically heterogeneous multi drug resistant E. coli strains with virulence potential showed a high risk in the seafood industry.

DOI: 
10.18502/jfqhc.9.1.9685 
Full-Text [PDF 618 kb]   (491 Downloads)    
Type of Study: Original article | Subject: Special
Received: 21/08/01 | Accepted: 21/12/15 | Published: 22/03/28

References
1. Al-Sarawi H.A., Jha A.N., Baker-Austin C., Al-Sarawi M.A., Lyons B.P. (2018). Baseline screening for the presence of antimicrobial resistance in E. coli isolated from Kuwait's marine environment. Marine Pollution Bulletin. 129: 893-898. [DOI: 10.1016/j.marpolbul.2017.10.044] [DOI:10.1016/j.marpolbul.2017.10.044] [PMID]
2. Antony A.C., Paul M.K., Silvester R., Aneesa P.A., Suresh K., Divya P.S., Paul S., Fathima P.A., Abdulla M.H. (2016). Comparative evaluation of EMB agar and Hicrome E. coli agar for differentiation of green metallic sheen producing non E. coli and typical E. coli colonies from food and environmental samples. Journal of Pure and Applied Microbiology. 10: 2863-2870. [DOI: 10.22207/JPAM.10.4.48] [DOI:10.22207/JPAM.10.4.48]
3. Antony A.C., Silvester R., Divya P.S., Aneesa P.A., Francis B., Ajith J.C., Hussain M.S., Umesh B.T., George J., Abdulla M.H. (2021). Faecal contamination and prevalence of pathogenic E. coli in shellfish growing areas along South-West coast of India. Regional Studies in Marine Science. 44: 101774. [DOI: 10.1016/j.rsma.2021.101774] [DOI:10.1016/j.rsma.2021.101774]
4. Balcázar J.L., Subirats J., Borrego C.M. (2015). The role of biofilms as environmental reservoirs of antibiotic resistance. Frontiers in Microbiology. 6: 1216. [DOI: 10.3389/fmicb.2015.01216] [DOI:10.3389/fmicb.2015.01216] [PMID] [PMCID]
5. Bauer A.W., Kirby W.M.M., Sherris J.C., Turck M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology. 45: 493-496. [DOI: 10.1093/ajcp/45.4_ts.493] [DOI:10.1093/ajcp/45.4_ts.493] [PMID]
6. Clermont O., Christenson J.K., Denamur E., Gordon D.M. (2013). The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environmental Microbiology Reports. 5: 58-65. [DOI: 10.1111/1758-2229.12019] [DOI:10.1111/1758-2229.12019] [PMID]
7. Clinical and Laboratory Standards Institute (CLSI). (2016). Performance standards for antimicrobial susceptibility testing. 26th edition. CLSI document M100-S26. Clinical and Laboratory Standards Institute, Wayne, PA.
8. Corzo-Ariyama H.A., García-Heredia A., Heredia N., García S., León J., Jaykus L., Solís-Soto L. (2019). Phylogroups, pathotypes, biofilm formation and antimicrobial resistance of Escherichia coli isolates in farms and packing facilities of tomato, jalapeño pepper and cantaloupe from northern Mexico. International Journal of Food Microbiology. 290: 96-104. [DOI: 10.1016/j.ijfoodmicro.2018.10.006] [DOI:10.1016/j.ijfoodmicro.2018.10.006] [PMID]
9. Dib A.L., Agabou A., Chahed A., Kurekci C., Moreno E., Espigares M., Espigares E. (2018). Isolation, molecular characterization and antimicrobial resistance of Enterobacteriaceae isolated from fish and seafood. Food Control. 88: 54-60. [DOI: 10.1016/j.foodcont.2018.01.005] [DOI:10.1016/j.foodcont.2018.01.005]
10. Divya S.P., Hatha A.A.M. (2019). Screening of tropical estuarine water in South-West coast of India reveals emergence of ARGs-harboring hypervirulent Escherichia coli of global significance. International Journal of Hygiene and Environmental Health. 222: 235-248. [DOI: 10.1016/j.ijheh.2018.11.002] [DOI:10.1016/j.ijheh.2018.11.002] [PMID]
11. Dutta C., Sengupta C. (2016). Prevalence of Escherichia coli in Fish and Shrimps obtained from retail Fish markets in and around Kolkata, India. Frontiers in Environmental Microbiology. 2: 1-5. [DOI: 10.11648/j.fem.20160201.11] [DOI:10.11648/j.fem.20160201.11]
12. Food and Drug Administration (FDA). (2012). Bad bug book, foodborne pathogenic microorganisms and natural toxins. 2nd edition. Washington.
13. Francis B., Abdulla M.H. (2021). Prevalence of biofilm associated pathogenic Escherichia coli in seafood pre-processing factories - a potential threat to seafood safety. Fishery Technology. 58: 229-238.
14. Gupta B., Ghatak S., Gill J.P.S. (2013). Incidence and virulence properties of E. coli isolated from fresh fish and ready-to-eat fish products. Veterinary World. 6: 5-9. [DOI: 10.5455/ vetworld.2013.5-9] [DOI:10.5455/vetworld.2013.5-9]
15. Handbook on Fisheries Statistics. (2018). Department of fisheries, ministry of fisheries, animal husbandry and dairying. Government of India, New Delhi.
16. Hatha A.A.M., Maqbool T.K., Kumar S.S. (2003). Microbial quality of shrimp products of export trade produced from aquacultured shrimp. International Journal of Food Microbiology. 82: 213-221. [DOI: 10.1016/S0168-1605(02)00306-9] [DOI:10.1016/S0168-1605(02)00306-9]
17. Iguchi A., Von Mentzer A., Kikuchi T., Thomson N.R. (2017). An untypeable enterotoxigenic Escherichia coli represents one of the dominant types causing human disease. Microbial Genomics. 3: e000121. [DOI: 10.1099/mgen.0.000121] [DOI:10.1099/mgen.0.000121] [PMID] [PMCID]
18. International Organization for Standardization (ISO). (2004). Microbiology of food and animal feeding stuffs - Horizontal methods for sampling techniques from surfaces using contact plates and swabs. No. ISO 18593:2004. URL: https://www. iso.org/standard/39849.html
19. International Organization for Standardization (ISO). (2006). Microbiology of food and animal feeding stuffs - horizontal method for the enumeration of coliforms - Colony-count technique. No. ISO 4832:2006. URL: https://www.iso.org/ standard/38282.html
20. Julian T.R., Islam M.A., Pickering A.J., Roy S., Fuhrmeister E.R., Ercumen A., Harris A., Bishai J., Schwab K.J. (2015). Genotypic and phenotypic characterization of Escherichia coli isolates from feces, hands, and soils in rural Bangladesh via. the Colilert Quanti-Tray system. Applied and Environmental Microbiology. 81: 1735-1743. [DOI: 10.1128/AEM.03214-14] [DOI:10.1128/AEM.03214-14] [PMID] [PMCID]
21. Koga V.L., Tomazetto G., Cyoia P.S., Neves M.S., Vidotto M.C., Nakazato G., Kobayashi R.K.T. (2014). Molecular screening of virulence genes in extraintestinal pathogenic Escherichia coli isolated from human blood culture in Brazil. BioMed Research International. 2014. [DOI: 10.1155/2014/465054] [DOI:10.1155/2014/465054] [PMID] [PMCID]
22. Kumar H.S., Otta S.K., Karunasagar I., Karunasagar I. (2001). Detection of shiga-toxigenic Escherichia coli (STEC) in fresh seafood and meat marketed in Mangalore, India by PCR. Letters in Applied Microbiology. 33: 334-338. [DOI: 10.1046/ j.1472-765x.2001.01007.x] [DOI:10.1046/j.1472-765X.2001.01007.x] [PMID]
23. Kumar H.S., Parvathi A., Karunasagar I., Karunasagar I. (2005). Prevalence and antibiotic resistance in Escherichia coli in tropical seafood. World Journal of Microbiology and Biotechnology. 21:619-623. [DOI: 10.1007/s11274-004-3555-8] [DOI:10.1007/s11274-004-3555-8]
24. Murugadas V., Joseph T.C., Lalitha K.V. (2016). Distribution of pathotypes of Escherichia coli in seafood from retail markets of Kerala, India. Indian Journal of Fisheries. 63: 152-155. [DOI: 10.21077/ijf.2016.63.1.49671-24] [DOI:10.21077/ijf.2016.63.1.49671-24]
25. Oh K.-H., Shin E., Jung S.-M., Im J., Cho S.-H., Hong S., Yoo C.-K., Chung G.T. (2017). First isolation of a hybrid shigatoxigenic and enterotoxigenic Escherichia coli (STEC/ETEC) strain harboring stx2 and elt genes in Republic of Korea. Japanese Journal of Infectious Diseases. 70: 347-348. [DOI: 10.7883/yoken.JJID.2016.237] [DOI:10.7883/yoken.JJID.2016.237] [PMID]
26. Osundiya O.O., Oladele R.O., Oduyebo O.O. (2013). Multiple antibiotic resistance (MAR) indices of Pseudomonas and Klebsiella species isolates in Lagos university teaching hospital. African Journal of Clinical and Experimental Microbiology. 14: 164-168. [DOI: 10.4314/ajcem.v14i3.8] [DOI:10.4314/ajcem.v14i3.8]
27. Park S.-H., Kang D.-H. (2017). Influence of surface properties of produce and food contact surfaces on the efficacy of chlorine dioxide gas for the inactivation of foodborne pathogens. Food Control. 81: 88-95. [DOI: 10.1016/j.foodcont.2017.05.015] [DOI:10.1016/j.foodcont.2017.05.015]
28. Paton A.W., Paton J.C. (1998). Detection and characterization of shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. Journal of Clinical Microbiology. 36: 598-602. [DOI: 10.1128/JCM.36.2.598-602.1998] [DOI:10.1128/JCM.36.2.598-602.1998] [PMID] [PMCID]
29. Sehgal R., Kumar Y., Kumar S. (2008). Prevalence and geographical distribution of Escherichia coli O157 in India: a 10-year survey. Transactions of the Royal Society of Tropical Medicine and Hygiene. 102: 380-383. [DOI: 10.1016/j.trstmh. 2008.01.015] [DOI:10.1016/j.trstmh.2008.01.015] [PMID]
30. Sivaraman G.K., Jha A.K., Remya S., Renuka V., Lalitha K.V., Ravishankar C.N. (2017). Antibiotic resistance of Escherichia coli isolated from seafood of Veraval, Gujarat to third generation cephalosporins. Fishery Technology. 54: 141-144.
31. Uyaguari-Díaz M.I., Croxen M.A., Luo Z., Cronin K.I., Chan M., Baticados W.N., Nesbitt M.J., Li S., Miller K.M., Dooley D., Hsiao W., Isaac-Renton J.L., et al. (2018). Human activity determines the presence of integron-associated and antibiotic resistance genes in southwestern British Columbia. Frontiers in Microbiology. 9: 852. [DOI: 10.3389/fmicb.2018.00852] [DOI:10.3389/fmicb.2018.00852] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb