Volume 9, Issue 1 (March 2022)                   J. Food Qual. Hazards Control 2022, 9(1): 23-31 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hainghumbi T, Embashu W, Nantanga K, Kadhila N, Iipumbu L. Assessment of Microbiological Properties, Mycotoxins, and Heavy Metals in Underprized Raw Kalahari Truffles Sold in Namibia. J. Food Qual. Hazards Control 2022; 9 (1) :23-31
URL: http://jfqhc.ssu.ac.ir/article-1-929-en.html
Department of Food Science and Systems, Faculty of Agriculture, Engineering and Natural Sciences, University of Namibia , knantanga@unam.na
Abstract:   (692 Views)
Background: Kalahari truffle (Kalaharituber pfeilii) is found in the Kalahari desert and nearby regions (Africa). This study assessed the microbiological quality and safety, mycotoxins, and heavy metals contents of raw Kalahari truffle sold in Namibia.
Methods: Batches of Kalahari truffles were purchased from informal markets and different vendors in Namibia. Total aerobic, coliform, yeast, and moulds counts, and Salmonella were assessed. Also, some mycotoxins and heavy metals were determined. Data were analyzed using SPSS Statistics Software, Version 25.
Results: Total aerobic count of unwashed truffles ranged from 4.4 to 7.3 log Colony Forming Unit (CFU)/g. Total coliform counts detected in truffles were 6.0 log CFU/g. Salmonella was not detected. Doxynivalenol was the most prevalent mycotoxin. Fumonisin B1 levels ranged from 17.4 to 142.1 µg/kg. Ochratoxin A levels in unwashed truffles ranged from 0.1 to 48.5 µg/kg. Total aflatoxin levels were 26.3 to 27.5 µg/kg, while zearalenone levels ranged from 45.0 to 9,680 µg/kg. The iron content was up to 746.72 mg/kg. Cadmium and zinc were detected in the studied samples, but mercury and nickel were no detectable in any samples.
Conclusion: The studied truffle samples were safe in terms of Salmonella, mercury, and nickel. However, some of the detected microorganisms, mycotoxins, and heavy metals in underprized Kalahari truffles may impair the safety, shelf life, and human health. Thus, they should be subjected to appropriate processing before consumption.

DOI: 
10.18502/jfqhc.9.1.9687
Full-Text [PDF 718 kb]   (358 Downloads)    
Type of Study: Original article | Subject: Special
Received: 21/07/07 | Accepted: 21/10/28 | Published: 22/03/28

References
1. AACC International. (1999). Method 44‐15.02: moisture-air‐oven methods. Approved Methods of Analysis.[DOI: 10.1094/ AACCIntMethod-44-15.02]
2. Akyüz M., Kirbag S. (2018). Nutritive value of desert truffles species of genera Terfezia and Picoa (Ascomycetes) from Arid and semiarid regions of eastern Turkey. International Journal of Medicinal Mushrooms. 20: 1097-1106. [DOI: 10.1615/IntJMedMushrooms.2018028796] [DOI:10.1615/IntJMedMushrooms.2018028796] [PMID]
3. Álvarez-Lafuente A., Benito-Matías L.F., Peñuelas-Rubira J.L., Suz L.M. (2018). Multi-cropping edible truffles and sweet chestnuts: production of high-quality Castanea sativa seedlings inoculated with Tuber aestivum, its ecotype T. uncinatum, T. brumale, and T. macrosporum. Mycorrhiza. 28: 29-38. [DOI: 10.1007/s00572-017-0805-9] [DOI:10.1007/s00572-017-0805-9] [PMID]
4. Amri E., Lenoi S.O. (2016). Aflatoxin and fumonisin contamination of sun-dried sweet potato (Ipomoea batatas L.) chips in Kahama District, Tanzania. Journal of Applied and Environmental Microbiology. 4: 55-62. [DOI: 10.12691/jaem-4-3-2]
5. Anukul N., Vangnai K., Mahakarnchanakul W. (2013). Significance of regulation limits in mycotoxin contamination in Asia and risk management programs at the national level. Journal of Food and Drug Analysis. 21: 227-241. [DOI: 10.1016/j.jfda. 2013.07.009] [DOI:10.1016/j.jfda.2013.07.009]
6. AOAC International. (2016). Official Methods of Analysis. Method 995.20:2016. Approved Methods of Analysis.
7. Behzadi A.A., Zareie M., Abbasi A., Masoomi B., Ashrafi-Dehkordi E., Morte A. (2021). Physicochemical properties, nutritional composition, and phylogenic analysis of black truffles grown in Fars Province, Iran. International Journal of Nutrition Sciences. 6: 45-51. [DOI: 10.30476/IJNS.2021. 90183.1128]
8. Cirlincione F., Francesca N., Settanni L., Donnini D., Venturella G., Gargano M.L. (2021). Microbial safety of black summer truffle collected from Sicily and Umbria Regions, Italy. Journal of Food Quality and Hazards Control. 8: 13-20. [DOI: 10.18502/jfqhc.8.1.5458] [DOI:10.18502/jfqhc.8.1.5458]
9. Codex Alimentarius Commission. (1995). General standard for contaminants and toxins in food and feed. CXS 193-1995.
10. Codex Alimentarius Commission. (2011). Joint FAO/WHO food standards programme codex committee on contaminants in foods. 15th Session. The Hague, The Netherlands.
11. EFSA NDA (European Food Safety Authority Panel on Dietetic Products, Nutrition and Allergies). (2013). Scientific opinion on dietary reference values for manganese. EFSA Journal. 11: 3419. [DOI: 10.2903/j.efsa.2013.3419] [DOI:10.2903/j.efsa.2013.3419]
12. EFSA (European Food Safety Authority). (2011). Statement on tolerable weekly intake for cadmium. EFSA Journal. 9: 1975. [DOI: 10.2903/j.efsa.2011.1975] [DOI:10.2903/j.efsa.2011.1975]
13. European Commission. (2004). Directive 2004/24/EC of the European parliament and of the council of 31 March 2004 amending, as regards traditional herbal medicinal products, directive 2001/83/EC on the community code relating to medicinal products for human use. Official Journal of the European :union:. L 136/47: 85-90.
14. European Commission. (2008). Commission regulation (EC) No 629/2008 of 2 July 2008 amending regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European :union:. L 173/6-9.
15. Ezekiel C.N., Sulyok M., Frisvad J.C., Somorin Y.M., Warth B., Houbraken J., Samson R.A., Krska R., Odebode A.C. (2013). Fungal and mycotoxin assessment of dried edible mushroom in Nigeria. International Journal of Food Microbiology. 162: 231-236. [DOI: 10.1016/j.ijfoodmicro.2013.01.025] [DOI:10.1016/j.ijfoodmicro.2013.01.025] [PMID]
16. Falandysz J., Szymczyk K., Ichihashi H., Bielawski L., Gucia M., Frankowska A., Yamasaki S.-I. (2001). ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Additives and Contaminants. 18: 503-513. [DOI: 10.1080/02652030119625] [DOI:10.1080/02652030119625] [PMID]
17. Fang Y., Sun X., Yang W., Ma N., Xin Z., Fu J., Liu X., Liu M., Mariga A.M., Zhu X., Hu Q. (2014). Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chemistry. 147: 147-151. [DOI: 10.1016/j.foodchem.2013.09.116] [DOI:10.1016/j.foodchem.2013.09.116] [PMID]
18. Feng P., Weagant S.D., Grant M.A., Burkhardt W., Shellfish M., Water B. (2002). Enumeration of Escherichia coli and the coliform bacteria. Bacteriological Analytical Manual. 13: 1-13. [DOI:10.1016/S0014-5793(02)02235-4]
19. Food and Agriculture Organization (FAO). (1997). Worldwide regulations for mycotoxins. FAO Food and Nutrition Paper 64.
20. Food and Agriculture Organization (FAO). (2004). Worldwide regulations for mycotoxins in food and feed in 2003. FAO Food and Nutrition Paper 81.
21. Giron H.C. (1973). Perkin elmer atomic spectrophotometer. Atomic absorption newsletter. 12: 28.
22. Jonathan S.G., Esho E.O. (2010). Fungi and aflatoxin detection in two stored oyster mushrooms (Pleurotus ostreatus and Pleurotus pulmonarius) from Nigeria. Electronic Journal of Environmental, Agricultural and Food Chemistry. 9: 1722-1730.
23. Koul A., Sumbali G. (2008). Detection of zearalenone, zearalenol and deoxynivalenol from medicinally important dried rhizomes and root tubers. African Journal of Biotechnology. 7: 4136-4139.
24. Marini M., Angouria-Tsorochidou E., Caro D., Thomsen M. (2021). Daily intake of heavy metals and minerals in food - a case study of four Danish dietary profiles. Journal of Cleaner Production. 280: 124279. [DOI: 10.1016/j.jclepro.2020. 124279] [DOI:10.1016/j.jclepro.2020.124279]
25. Maturin L., Peeler J.T. (2001). Aerobic plate count. Food and Drug Administration (FDA), Bacteriological Analytical Manual Online. 8th Edition. Silver Spring, Berlin.
26. Michelot D., Poirier F., Melendez-Howell L.M. (1999). Metal content profiles in mushrooms collected in primary forests of Latin America. Archives of Environmental Contamination and Toxicology. 36: 256-263. [DOI: 10.1007/s002449900469] [DOI:10.1007/s002449900469] [PMID]
27. Paithankar J.G., Saini S., Dwivedi S., Sharma A., Chowdhuri D.K. (2021). Heavy metal associated health hazards: an interplay of oxidative stress and signal transduction. Chemosphere. 262: 128350. [DOI: 10.1016/j.chemosphere.2020.128350] [DOI:10.1016/j.chemosphere.2020.128350] [PMID]
28. Phong W.N., Chang S., Payne A.D., Dykes G.A., Coorey R. (2022). Microbiological evaluation of whole, sliced, and freeze-dried black truffles (Tuber melanosporum) under vacuum packaging and refrigerator storage. JSFA Reports. 2: 92-99. [DOI: 10.1002/jsf2.32] [DOI:10.1002/jsf2.32]
29. Qazmooz H.A., Guda M.A., Algburi J.B., Al-Zurfi S.K.L., Al-Graiti T.A. (2020). Determination of heavy metal in samples of Tirmania nivea fungi in different soils. Plant Archives. 20: 313-317.
30. Reale A., Sorrentino E., Iacumin L., Tremonte P., Manzano M., Maiuro L., Comi G., Coppola R., Succi M. (2009). Irradiation treatments to improve the shelf life of fresh black truffles (truffles preservation by gamma-rays). Journal of Food Science. 74: M196-M200. [DOI: 10.1111/j.1750-3841.2009. 01142.x] [DOI:10.1111/j.1750-3841.2009.01142.x] [PMID]
31. Rivera C.S., Blanco D., Oria R., Venturini M.E. (2010). Diversity of culturable microorganisms and occurrence of Listeria monocytogenes and Salmonella spp. in Tuber aestivum and Tuber melanosporum ascocarps. Food Microbiology. 27: 286-293. [DOI: 10.1016/j.fm.2009.11.001] [DOI:10.1016/j.fm.2009.11.001] [PMID]
32. Rivera C.S., Venturini M.E., Oria R., Blanco D. (2011). Selection of a decontamination treatment for fresh Tuber aestivum and Tuber melanosporum truffles packaged in modified atmospheres. Food Control. 22: 626-632. [DOI: 10.1016/j. foodcont.2010.10.015] [DOI:10.1016/j.foodcont.2010.10.015]
33. Rudawska M., Leski T. (2005a). Macro- and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in West-central Poland. Food Chemistry. 92: 499-506. [DOI: 10.1016/j.foodchem.2004.08.017] [DOI:10.1016/j.foodchem.2004.08.017]
34. Rudawska M., Leski T. (2005b). Trace elements in fruiting bodies of ectomycorrhizal fungi growing in Scots pine (Pinus sylvestris L.) stands in Poland. Science of the Total Environment. 339: 103-115. [DOI: 10.1016/j.scitotenv.2004. 08.002] [DOI:10.1016/j.scitotenv.2004.08.002] [PMID]
35. Saltarelli R., Ceccaroli P., Cesari P., Barbieri E., Stocchi V. (2008). Effect of storage on biochemical and microbiological parameters of edible truffle species. Food Chemistry. 109: 8-16. [DOI: 10.1016/j.foodchem.2007.11.075] [DOI:10.1016/j.foodchem.2007.11.075] [PMID]
36. Sarikurkcu C., Copur M., Yildiz D., Akata I. (2011). Metal concentration of wild edible mushrooms in Soguksu National Park in Turkey. Food Chemistry. 128: 731-734. [DOI: 10. 1016/j.foodchem.2011.03.097] [DOI:10.1016/j.foodchem.2011.03.097]
37. Sarikurkcu C., Popović-Djordjević J., Solak M.H. (2020). Wild edible mushrooms from Mediterranean Region: metal concentrations and health risk assessment. Ecotoxicology andEnvironmental Safety. 190: 110058. [DOI: 10.1016/j.ecoenv. 2019.110058] [DOI:10.1016/j.ecoenv.2019.110058] [PMID]
38. Sarmast E., Fallah A.A., Jafari T., Khaneghah A.M. (2021). Occurrence and fate of mycotoxins in cereals and cereal-based products: a narrative review of systematic reviews and meta-analyses studies. Current Opinion in Food Science. 39: 68-75. [DOI: 10.1016/j.cofs.2020.12.013] [DOI:10.1016/j.cofs.2020.12.013]
39. Tejedor-Calvo E., Morales D., García-Barreda S., Sánchez S., Venturini M.E., Blanco D., Soler-Rivas C., Marco P. (2020). Effects of gamma irradiation on the shelf-life and bioactive compounds of Tuber aestivum truffles packaged in passive modified atmosphere. International Journal of FoodMicrobiology. 332: 108774. [DOI: 10.1016/j.ijfoodmicro. 2020.108774] [DOI:10.1016/j.ijfoodmicro.2020.108774] [PMID]
40. Trappe J.M., Claridge A.W., Arora D., Smit W.A. (2008). Desert truffles of the African Kalahari: ecology, ethnomycology, and taxonomy. Economic Botany. 62: 521-529. [DOI: 10.1007 /s12231-008-9027-6] [DOI:10.1007/s12231-008-9027-6]
41. Ünüsan N. (2019). Systematic review of mycotoxins in food and feeds in Turkey. Food Control. 97: 1-14. [DOI: 10.1016/j. foodcont.2018.10.015] [DOI:10.1016/j.foodcont.2018.10.015]
42. Venturini M.E., Reyes J.E., Rivera C.S., Oria R., Blanco D. (2011). Microbiological quality and safety of fresh cultivated and wild mushrooms commercialized in Spain. Food Microbiology. 28: 1492-1498. [DOI: 10.1016/j.fm.2011.08.007] [DOI:10.1016/j.fm.2011.08.007] [PMID]
43. Wahiba B., Wafaà T., Asmaà K., Bouziane A., Mohammed B. (2016). Nutritional and antioxidant profile of red truffles (Terfezia claveryi) and white truffle (Tirmania nivea) from southwestern of Algeria. Der Pharmacia Letter. 8: 134-141.
44. Xu Y., Xing Y., Li C., Zhao X. (2019). Analysis of various heavy metals and different forms of arsenic and mercury in truffles. Journal of Food Safety and Quality. 10: 510-514.
45. Yousif P.A., Jalal A.F., Faraj K.A. (2020). Essential constituents of truffle in Kurdistan Region. Zanco Journal of Pure and Applied Sciences. 32: 158-166. [DOI: 10.21271/ZJPAS.32.5.15] [DOI:10.21271/zjpas.32.5.15]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb