Volume 10, Issue 4 (December 2023)                   J. Food Qual. Hazards Control 2023, 10(4): 199-210 | Back to browse issues page

Ethics code: No. IR.TBZMED.VCR. REC.1397.438


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Homayouni Rad A, Arab K, Berri A, Fazelioskouei T, Ebrahimi B. Carboxymethyl Cellulose-Amuniacum Gum Based Edible Films Enriched with Clove Essential Oil: Optimization Formulation Using Response Surface Methodology (RSM). J. Food Qual. Hazards Control 2023; 10 (4) :199-210
URL: http://jfqhc.ssu.ac.ir/article-1-1101-en.html
Department of Food Science and Technology, Maragheh University of Medical Sciences, Maragheh, Iran , ebrahimib@tbzmed.ac.ir
Abstract:   (352 Views)
Backgraound: Polysaccharides, particularly Carboxymethyl Cellulose (CMC) and Ammoniacum Gum (AMG), are considered valuable due to their thermal stability and non-toxicity. CMC has good film-forming ability but weak mechanical properties, while AMG shows promise with its unique chemical composition. Additionally, essential oils, such as Clove Essential Oil (CEO), are being used to enhance the antimicrobial properties of edible films, offering a natural way to extend the shelf life of food products.
Methods: This study investigated the combined effect of CMC: 0.5-1.5 wt %, AMG: 1-5 wt %, as well as CEO: 0-30 v/v % on the physical characteristics of the CMC-AMG films by Response Surface Methodology. The optimization was performed with the aim of maximizing Whiteness Index, Ultimate Tensile Strength (UTS), and Strain at Break (SB) and minimizing total color difference (ΔE) values. Fourier-Transform Infrared Spectroscopy, film microstructure, Differential Scanning Calorimeter analysis, and antibacterial activity were investigated. The analysis was conducted using Design Expert software version 10.00 (STAT-EASE Inc., Minneapolis, USA).
Result: The films with the highest UTS have been obtained through a composition of 5 g CMC, 1.5 g AMG, and 15% CEO. On the contrary, using a composition of 5 g CMC, 1 g AMG, and 30% CEO revealed the highest SB (115.41%). The highest UTS value of 13.17 MPa was obtained with a formulation consisting of 5% AMG, 1.5% CMC, and 15% CEO. Nevertheless, the maximum SB value of 115.41% was achieved with a formulation containing 5% AMG, 1% CMC, and 30% CEO. Moreover, heterogeneous microstructure and more opaque films were obtained as identified by the higher ΔE. The Differential Scanning Calorimeter results demonstrated that incorporating a CEO did not impinge on thermal stability. Furthermore, the addition of CEO led to a rise in antimicrobial activity against Salmonella enterica, Pseudomonas fluorescens, Escherichia coli, and Listeria monocytogenes.
Conclusion: In conclusion, combination of CMC and AMG in optimum levels, led to the production of a film with acceptable mechanical properties. Also, these films showed significant antimicrobial activity.

DOI: 10.18502/jfqhc.10.4.14178
Full-Text [PDF 1204 kb]   (210 Downloads)    
Type of Study: Original article | Subject: Special
Received: 23/06/01 | Accepted: 23/11/30 | Published: 23/12/30

References
1. Akhtar H.M.S., Riaz A., Hamed Y.S., Abdin M., Chen G., Wan P., Zeng X. (2018). Production and characterization of CMC-based antioxidant and antimicrobial films enriched with chickpea hull polysaccharides. International Journal of Biological Macromolecules. 118: 469-477. [DOI: 10.1016/j.ijbiomac. 2018.06.090] [DOI:10.1016/j.ijbiomac.2018.06.090] [PMID]
2. Araya J., Esquivel M., Jimenez G., Navia D., Poveda L. (2022). Antimicrobial activity and physicochemical characterization of thermoplastic films based on bitter cassava starch, nanocellulose and rosemary essential oil. Journal of Plastic Film and Sheeting. 38: 46-71. [DOI: 10.1177/87560879211023882] [DOI:10.1177/87560879211023882]
3. American Society of Testing and Materials (ASTM) D882-02. (2002). Standard test method for tensile properties of thin plastic sheeting. URL: https://www.astm.org/d0882-02.html
4. Azarifar M., Ghanbarzadeh B., Sowti Khiabani M., Akhondzadeh Basti A., Abdulkhani A., Noshirvani N., Hosseini M. (2019). The optimization of gelatin-CMC based active films containing chitin nanofiber and Trachyspermum ammi essential oil by response surface methodology. Carbohydrate Polymers. 208: 457-468. [DOI: 10.1016/j.carbpol.2019.01.005] [DOI:10.1016/j.carbpol.2019.01.005] [PMID]
5. Bahrami A., Fattahi R. (2021). Biodegradable carboxymethyl cellulose-polyvinyl alcohol composite incorporated with Glycyrrhiza Glabra L. essential oil: physicochemical and antibacterial features. Food Science and Nutrition. 9: 4974-4985. [DOI: 10.1002/fsn3.2449] [DOI:10.1002/fsn3.2449] [PMID] [PMCID]
6. Benavides S., Villalobos-Carvajal R., Reyes J.E. (2012). Physical, mechanical and antibacterial properties of alginate film: effect of the crosslinking degree and oregano essential oil concentration. Journal of Food Engineering. 110: 232-239. [DOI: 10.1016/ j.jfoodeng.2011.05.023] [DOI:10.1016/j.jfoodeng.2011.05.023]
7. Bertan L.C., Tanada-Palmu P.S., Siani A.C., Grosso C.R.F. (2005). Effect of fatty acids and 'Brazilian elemi'on composite films based on gelatin. Food Hydrocolloids. 19: 73-82. [DOI: 10.1016/j.foodhyd.2004.04.017] [DOI:10.1016/j.foodhyd.2004.04.017]
8. Bezerra M.A., Santelli R.E., Oliveira E.P., Villar L.S., Escaleira L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 76: 965-977. [DOI: 10.1016/j.talanta.2008.05.019] [DOI:10.1016/j.talanta.2008.05.019] [PMID]
9. Cascant M.M., Sisouane M., Tahiri S., EL Krati M., Cervera M.L., Garrigues S., De La Guardia M. (2016). Determination of total phenolic compounds in compost by infrared spectroscopy. Talanta. 153: 360-365. [DOI: 10.1016/j.talanta.2016.03.020] [DOI:10.1016/j.talanta.2016.03.020] [PMID]
10. Dashipour A., Khaksar R., Hosseini H., Shojaee-Aliabadi S., Ghanati K. (2014). Physical, antioxidant and antimicrobial characteristics of carboxymethyl cellulose edible film cooperated with clove essential oil. Zahedan Journal of Research in Medical Sciences. 16: 34-42.
11. Ebrahimi B., Ghanbarzadeh B., Homayouni Rad A., Hemmati S., Moludi J., Arab K., Karimi S. (2022). Structural and physicochemical characterization of a novel water-soluble polysaccharide isolated from Dorema ammoniacum. Polymer Bulletin. 79: 9589-9608. [DOI: 10.1007/s00289-021-03952-y] [DOI:10.1007/s00289-021-03952-y]
12. Ebrahimi B., Homayouni Rad A., Ghanbarzadeh B., Torbati M., Falcone P.M. (2020). The emulsifying and foaming properties of Amuniacum gum (Dorema ammoniacum) in comparison with gum Arabic. Food Science and Nutrition. 8: 3716-3730. [DOI: 10.1002/fsn3.1658] [DOI:10.1002/fsn3.1658] [PMID] [PMCID]
13. Ebrahimi B., Mohammadi R., Rouhi M., Mortazavian A.M., Shojaee-Aliabadi S., Koushki M.R. (2018). Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality parameters. LWT-Food Science and Technology. 87: 54-60. [DOI: 10.1016/j.lwt.2017.08.066] [DOI:10.1016/j.lwt.2017.08.066]
14. Ghanbarzadeh B., Almasi H. (2011). Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. International Journal of Biological Macromolecules. 48: 44-49. [DOI: 10.1016/j.ijbiomac.2010.09.014] [DOI:10.1016/j.ijbiomac.2010.09.014] [PMID]
15. Gülçin Ì., Şat İ.G., Beydemir Ş., Elmastaş M., Küfrevioǧlu Ö.İ. (2004). Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chemistry. 87: 393-400. [DOI: 10.1016/j. foodchem.2003.12.008] [DOI:10.1016/j.foodchem.2003.12.008]
16. Guo F., Chen Q., Liang Q., Zhang M., Chen W., Chen H., Yun Y., Zhong Q., Chen W. (2021). Antimicrobial activity and proposed action mechanism of linalool against Pseudomonas fluorescens. Frontiers in Microbiology. 12: 562094. [DOI: 10.3389/ fmicb.2021.562094] [DOI:10.3389/fmicb.2021.562094]
17. Hoque S., Benjakul S., Prodpran T. (2011). Properties of film from cuttlefish (Sepia pharaonis) skin gelatin incorporated with cinnamon, clove and star anise extracts. Food Hydrocolloids. 25: 1085-1097. [DOI: 10.1016/j.foodhyd.2010.10.005] [DOI:10.1016/j.foodhyd.2010.10.005]
18. Hosseini M.H., Razavi S.H., Mousavi M.A. (2009). Antimicrobial, physical and mechanical properties of chitosan‐based films incorporated with thyme, clove and cinnamon essential oils. Journal of Food Processing and Preservation. 33: 727-743. [DOI: 10.1111/j.1745-4549.2008.00307.x] [DOI:10.1111/j.1745-4549.2008.00307.x]
19. Ju J., Xie Y., Guo Y., Cheng Y., Qian H., Yao W. (2019). Application of edible coating with essential oil in food preservation. Critical Reviews in Food Science and Nutrition. 59: 2467-2480. [DOI: 10.1080/10408398.2018.1456402] [DOI:10.1080/10408398.2018.1456402] [PMID]
20. Kadzińska J., Bryś J., Ostrowska-Ligęza E., Estéve M., Janowicz M. (2020). Influence of vegetable oils addition on the selected physical properties of apple-sodium alginate edible films. Polymer Bulletin. 77: 883-900. [DOI: 10.1007/s00289-019-02777-0] [DOI:10.1007/s00289-019-02777-0]
21. Lin Y.T., Labbe R.G., Shetty K. (2004). Inhibition of Listeria monocytogenes in fish and meat systems by use of oregano and cranberry phytochemical synergies. Applied and Environmental Microbiology. 70: 5672-5678. [DOI: 10.1128/AEM.70.9.5672-5678.2004] [DOI:10.1128/AEM.70.9.5672-5678.2004] [PMID] [PMCID]
22. Lu X., Wang J., Al-Qadiri H.M., Ross C.F., Powers J.R., Tang J., Rasco B.A. (2011). Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chemistry. 129: 637-644. [DOI: 10.1016/j.foodchem.2011.04.105] [DOI:10.1016/j.foodchem.2011.04.105] [PMID]
23. Ma Q., Zhang Y., Critzer F., Davidson P.M., Zivanovic S., Zhong Q. (2016). Physical, mechanical, and antimicrobial properties of chitosan films with microemulsions of cinnamon bark oil and soybean oil. Food Hydrocolloids. 52: 533-542. [DOI: 10.1016/j.foodhyd.2015.07.036] [DOI:10.1016/j.foodhyd.2015.07.036]
24. Malanovic N., Lohner K. (2016). Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1858: 936-946. [DOI: 10.1016/j.bbamem.2015.11.004] [DOI:10.1016/j.bbamem.2015.11.004] [PMID]
25. Maleki M., Mohsenzadeh M. (2022). Optimization of a biodegradable packaging film based on carboxymethyl cellulose and Persian gum containing titanium dioxide nanoparticles and Foeniculum vulgare essential oil using response surface methodology. Journal of Food Processing and Preservation. 46: e16424. [DOI: 10.1111/jfpp.16424] [DOI:10.1111/jfpp.16424]
26. Matsuura M. (2013). Structural modifications of bacterial lipopolysaccharide that facilitate Gram-negative bacteria evasion of host innate immunity. Frontiers in Immunology. 4: 109. [DOI: 10.3389/fimmu.2013.00109] [DOI:10.3389/fimmu.2013.00109] [PMID] [PMCID]
27. Nisar T., Wang Z.-C., Yang X., Tian Y., Iqbal M., Guo Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules. 106: 670-680. [DOI: 10.1016/j.ijbiomac. 2017.08.068] [DOI:10.1016/j.ijbiomac.2017.08.068] [PMID]
28. Pereda M., Ponce A.G., Marcovich N.E., Ruseckaite R.A., Martucci J.F. (2011). Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids. 25: 1372-1381. [DOI: 10.1016/j.foodhyd.2011.01.001]. [DOI:10.1016/j.foodhyd.2011.01.001]
29. Radovic M., Adamovic T., Pavlovic J., Rusmirovic J., Tadic V., Brankovic Z., Ivanovic J. (2019). Supercritical CO2 impregnation of gelatin-chitosan films with clove essential oil and characterization thereof. Chemical Industry and Chemical Engineering Quarterly. 25: 119-130. [DOI: 10.2298/ CICEQ180323025R] [DOI:10.2298/CICEQ180323025R]
30. Raeisi M., Tajik H., Aliakbarlu J., Mirhosseini S.H., Hosseini S.M.H. (2015). Effect of carboxymethyl cellulose-based coatings incorporated with Zataria multiflora Boiss. essential oil and grape seed extract on the shelf life of rainbow trout fillets. LWT-Food Science and Technology. 64: 898-904. [DOI: 10.1016/j.lwt.2015.06.010] [DOI:10.1016/j.lwt.2015.06.010]
31. Salama H.E., Abdel Aziz M.S., Sabaa M.W. (2019). Development of antibacterial carboxymethyl cellulose/chitosan biguanidine hydrochloride edible films activated with frankincense essential oil. International Journal of Biological Macromolecules. 139: 1162-1167. [DOI: 10.1016/j.ijbiomac.2019.08.104] [DOI:10.1016/j.ijbiomac.2019.08.104] [PMID]
32. Shahbazi Y. (2017). The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. International Journal of Biological Macromolecules. 99: 746-753. [DOI: 10.1016/j.ijbiomac. 2017.03.065] [DOI:10.1016/j.ijbiomac.2017.03.065] [PMID]
33. Vargas M., Albors A., Chiralt A., González-Martínez C. (2009). Characterization of chitosan-oleic acid composite films. Food Hydrocolloids. 23: 536-547. [DOI: 10.1016/j.foodhyd. 2008.02.009] [DOI:10.1016/j.foodhyd.2008.02.009]
34. Vasconcelos N.G., Croda J., Simionatto S. (2018). Antibacterial mechanisms of cinnamon and its constituents: a review. Microbial Pathogenesis. 120: 198-203. [DOI: 10.1016/j. micpath.2018.04.036] [DOI:10.1016/j.micpath.2018.04.036] [PMID]
35. Vlachos N., Skopelitis Y., Psaroudaki M., Konstantinidou V., Chatzilazarou A., Tegou E. (2006). Applications of fourier transform-infrared spectroscopy to edible oils. Analytica Chimica Acta. 573-574: 459-465. [DOI: 10.1016/j.aca.2006. 05.034] [DOI:10.1016/j.aca.2006.05.034] [PMID]
36. Walid Y., Malgorzata N., Katarzyna R., Piotr B., Ewa O.-L., Izabela B., Wissem A.-W., Majdi H., Slim J., Karima H.-N., Dorota W.-R., Moufida S.-T. (2022). Effect of rosemary essential oil and ethanol extract on physicochemical and antibacterial properties of optimized gelatin-chitosan film using mixture design. Journal of Food Processing and Preservation. 46: e16059. [DOI: 10.1111/jfpp.16059] [DOI:10.1111/jfpp.16059]
37. Yeddes W., Djebali K., Wannes W.A., Horchani-Naifer K., Hammami M., Younes I., Tounsi M.S. (2020). Gelatin-chitosan-pectin films incorporated with rosemary essential oil: optimized formulation using mixture design and response surface methodology. International Journal of Biological Macromolecules. 154: 92-103. [DOI: 10.1016/j.ijbiomac.2020.03.092] [DOI:10.1016/j.ijbiomac.2020.03.092] [PMID]
38. Yuen S.-N., Choi S.-M., Phillips D.L., Ma C.-Y. (2009). Raman and FTIR spectroscopic study of carboxymethylated non-starch polysaccharides. Food Chemistry. 114: 1091-1098. [DOI: 10.1016/j.foodchem. 2008.10.053] [DOI:10.1016/j.foodchem.2008.10.053]
39. Zhao F., Guo Y., Zhou X., Shi W., Yu G. (2020). Materials for solar-powered water evaporation. Nature Reviews Materials. 5: 388-401. [DOI: 10.1038/s41578-020-0182-4] [DOI:10.1038/s41578-020-0182-4]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb