Volume 10, Issue 3 (September 2023)                   J. Food Qual. Hazards Control 2023, 10(3): 123-134 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Meyer T, Tieman R, Breuer S, Denkenberger D, Pearce J. Toxic Analysis of Leaf Protein Concentrate Regarding Common Agricultural Residues. J. Food Qual. Hazards Control 2023; 10 (3) :123-134
URL: http://jfqhc.ssu.ac.ir/article-1-1057-en.html
Department of Electrical & Computer Engineering and Ivey Business School, Western University, ON, Canada , joshua.pearce@uwo.ca
Abstract:   (233 Views)
Background: Potential resilient foods which help reduce hunger are converting the ~998 million tons of agricultural residue generated each year into human edible food. Although it is possible to extract Leaf Protein Concentrate (LPC) from agricultural residues, it is not widely practiced because both toxicity and yields of the protein concentrates have not been widely investigated in the most common agricultural residues.
Methods: To fill this knowledge gap, this study uses high-resolution mass spectrometry and an open-source toolchain for non-targeted screening of toxins of nine agricultural plant residues in October 2021; it included seven agricultural residues: corn/maize, wheat, barley, alfalfa, yellow pea, sunflower, canola/rapeseed, and two weeds/agricultural residues of kochia, and round leaf mallow.
Results: The average yield ranged from about 7 to 14.5% for the nine LPCs investigated. According to the results, yellow pea, round leaf mallow, and canola are recommended for further investigation and scaling as they appear to be fit for human consumption based on the lack of dangerous toxins found in the analysis performed in this study.
Conclusion: All the compounds identified in these samples have either been approved by international regulatory boards for safe consumption or are known to be present in common beverages. The other agricultural residues require additional quantification of the toxins identified as it will determine the actual risk for human consumption. Overall, the potential for LPC to provide more needed calories from existing agricultural practices is extremely promising, but substantial amount of future work is needed to screen LPCs in all the agricultural residues depending on harvesting, handling, and storage conditions.

DOI: 10.18502/jfqhc.10.3.13643


Corresponding Author: Joshua M. Pearce
View Orcid in Profile
You can search for this author in PubMed     Google Scholar Profile
 
Full-Text [PDF 1128 kb]   (80 Downloads)    
Type of Study: Original article | Subject: Special
Received: 22/12/30 | Accepted: 23/08/10 | Published: 23/09/30

References
1. Alexander P., Brown C., Arneth A., Finnigan J., Moran D., Rounsevell M.D.A. (2017). Losses, inefficiencies and waste in the global food system. Agricultural Systems. 153: 190-200. [DOI: 10.1016/j.agsy.2017.01.014] [DOI:10.1016/j.agsy.2017.01.014] [PMID] [PMCID]
2. Alvarado K.A., Mill A., Pearce J.M., Vocaet A., Denkenberger D. (2020). Scaling of greenhouse crop production in low sunlight environments. Science of the Total Environment. 707: 136012. [DOI: 10.1016/ j.scitotenv.2019.136012] [DOI:10.1016/j.scitotenv.2019.136012] [PMID]
3. Bhagat J., Kaur A., Kaur R., Yadav A.K., Sharma V., Chadha B.S. (2016). Cholinesterase inhibitor (altenuene) from an endophytic fungus Alternaria alternata: optimization, purification and characterization. Journal of Applied Microbiology. 121: 1015-1025. [DOI: 10.1111/jam. 13192] [DOI:10.1111/jam.13192] [PMID]
4. Boonen J., Malysheva S.V., Taevernier L., Di Mavungu J.D., De Saeger S., De Spiegeleer B. (2012). Human skin penetration of selected model mycotoxins. Toxicology. 301: 21-32. [DOI: 10.1016/j.tox.2012.06.012] [DOI:10.1016/j.tox.2012.06.012] [PMID]
5. Breuer S.W., Toppen L., Schum S.K., Pearce J.M. (2021). Open source software toolchain for automated non-targeted screening for toxins in alternative foods. MethodsX. 8: 101551. [DOI: 10.1016/j.mex.2021. 101551] [DOI:10.1016/j.mex.2021.101551] [PMID] [PMCID]
6. Carlson G.P., Ullman M., Mantick N.A., Snyder P.W. (2002). 4-Vinylphenol-induced pneumotoxicity and hepatotoxicity in mice. Toxicologic Pathology. 30: 565-569. [DOI: 10.1080/ 01926230290105866] [DOI:10.1080/01926230290105866] [PMID]
7. Cayman Chemical. (2022a). Altenuene. URL: https://www. caymanchem.com/ product/ 21130/(-)-altenuene# reference33240. Accessed 4 August 2022.
8. Cayman Chemical. (2022b). Nivalenol. URL: https://www. caymanchem.com/product/11438. Accessed 4 August 2022.
9. Centers for Disease Control and Prevention (CDC). (2018). Case definition: trichothecene mycotoxin. URL: https://emergency.cdc. gov/agent/trichothecene/casedef.asp. Accessed 25 November 2022.
10. Centers for Disease Control and Prevention (CDC). (2017). Styrene. URL: https://www.cdc.gov/biomonitoring/ Styrene_FactSheet.html. Accessed 4 August 2022.
11. Chatonnet P., Dubourdie D., Boidron J.-N., Pons M. (1992). The origin of ethylphenols in wines. Journal of the Science of Food and Agriculture. 60: 165-178. [DOI: 10.1002/jsfa.2740600205] [DOI:10.1002/jsfa.2740600205]
12. Cherubin M.R., Da Silva Oliveira D.M., Feigl B.J., Pimentel L.G., Lisboa I.P., Gmach M.R., Varanda L.L., Morais M.C., Satiro L.S., Popin G.V., De Paiva S.R., Dos Santos A.K.B., et al. (2018). Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: a review. Scientia Agricola. 75: 255-272. [DOI: 10.1590/1678-992X-2016-0459] [DOI:10.1590/1678-992x-2016-0459]
13. Code of Federal Regulations. (2022). Title 40. URL: https:// www.ecfr.gov/ current/title-40/chapter-I/ subchapter-E/part-156/subpart-D/section-156.62. Accessed 19 July 2022.
14. Coker R.D. (2000). Aflatoxins and mycotoxins | chromatography. Encyclopedia of Separation Science. 2000: 1873-1888. [DOI: 10.1016/B0-12-226770-2/01191-1] [DOI:10.1016/B0-12-226770-2/01191-1]
15. Davys M.N.G., Richardier F.C., Kennedy D., De Mathan O., Collin S.M., Subtil J., Bertin E., Davys M.J. (2011). Leaf concentrate and other benefits of leaf fractionation. Combating Micronutrient Deficiencies: Food-Based Approaches. 338-365. [DOI: 10.1079/ 9781845937140.0338] [DOI:10.1079/9781845937140.0338]
16. Denkenberger D., Pearce J.M. (2014). Feeding everyone no matter what: managing food security after global catastrophe. Academic Press, United States.
17. Denkenberger D., Sandberg A., Tieman R.J., Pearce J.M. (2022). Long term cost-effectiveness of resilient foods for global catastrophes compared to artificial general intelligence safety. International Journal of Disaster Risk Reduction. 73: 102798. [DOI: 10.1016/j.ijdrr.2022. 102798] [DOI:10.1016/j.ijdrr.2022.102798]
18. Denkenberger D.C., Pearce J.M. (2015). Feeding everyone: solving the food crisis in event of global catastrophes that kill crops or obscure the sun. Futures. 72: 57-68. [DOI: 10.1016/j.futures.2014.11.008] [DOI:10.1016/j.futures.2014.11.008]
19. Dhakal A., Hashmi M.F., Sbar E. (2022). Aflatoxin toxicity. StatPearls Publishing, Treasure Island (FL).
20. Dorne J.L.C.M., Richardson J., Livaniou A., Carnesecchi E., Ceriani L., Baldin R., Kovarich S., Pavan M., Saouter E., Biganzoli F., Pasinato L., Zare Jeddi M., et al. (2021). EFSA's OpenFoodTox: an open source toxicological database on chemicals in food and feed and its future developments. Environment International. 146: 106293. [DOI: 10.1016/j.envint.2020.106293] [DOI:10.1016/j.envint.2020.106293] [PMID]
21. Eshel G., Shepon A., Noor E., Milo R. (2016). Environmentally optimal, nutritionally aware beef replacement plant-based diets. Environmental Science and Technology. 50: 8164-8168. [DOI: 10.1021/acs.est. 6b01006] [DOI:10.1021/acs.est.6b01006] [PMID]
22. European Food Safety Authority (EFSA). (2022). Chemical hazards database (OpenFoodTox). URL: https://www. efsa.europa.eu/en/ data-report/chemical-hazards-database-openfoodtox.
23. FAO Food and Nutrition Paper. (2003). Calculation of the energy content of foods - energy conversion factors. In: Food energy - methods of analysis andconversion factors. Food and Agriculture Organization of the United Nations, Rome.
24. FAO., IFAD., UNICEF., WFP., WHO. (2017). The state of food security and nutrition in the world 2017. Building resilience for peace and food security. FAO, Rome.
25. FDA. (2022). Food additive status list. URL: https://www.fda.gov/ food/food-additives-petitions/food-additive-status-list. Accessed 6 July 2022.
26. FIA. (2022). Forest inventory and analysis national program-national assessment-RPA. URL: https://www.fia.fs. fed.us/program-features/rpa/index.php. Accessed 4 August 2022.
27. FSIN., Global Network Against Food Crises. (2020). Global report on food crises. Rome. URL: https://www. fsinplatform.org/sites/default/ files/resources/files/GRFC%20ONLINE%20FINAL%202020.pdf.
28. Foley J.A., Ramankutty N., Brauman K.A., Cassidy E.S., Gerber J.S., Johnston M., Mueller N.D., O'Connell C., Ray D.K., West P.C., Balzer C., Bennett E.M., et al. (2011). Solutions for a cultivated planet. Nature. 478: 337-342. [DOI: 10.1038/nature10452] [DOI:10.1038/nature10452] [PMID]
29. Fratamico P.M., Bhunia A.K., Smith J.L. (2006). Foodborne pathogens: microbiology and molecular biology. CRC Press LLC, Boca Raton, USA. [DOI: 10.3201/eid1212. 061077].
30. García Martínez J.B., Pearce J.M., Throup J., Cates J., Lackner M., Denkenberger D.C. (2022). Methane single cell protein: potential to secure a global protein supply against catastrophic food shocks. Frontiers in Bioengineering and Biotechnology. 10: 906704. [DOI: 10.3389/fbioe.2022.906704] [DOI:10.3389/fbioe.2022.906704] [PMID] [PMCID]
31. Gerber P.J., Steinfeld H., Henderson B., Mottet A., Opio C., Dijkman J., Falcucci A., Tempio G. (2013). Tackling climate change through livestock - a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome. URL: https://www.fao.org/3/i3437e/ i3437e.pdf. Accessed 18 July 2022.
32. Gibson A.M., Hocking A.D. (1997). Advances in the predictive modelling of fungal growth in food. Trends in Food Science and Technology. 8: 353-358. [DOI: 10.1016/S0924-2244(97)01065-0] [DOI:10.1016/S0924-2244(97)01065-0]
33. Government of Canada. (2012). Information and notification document on health Canada's proposal to enable the use of dimethyl dicarbonate as a preservative in wine and in unstandardized water-based non-alcoholic beverages. URL: https://www.canada.ca/ content/dam/hc-sc/ migration/hc-sc/fn-an/alt_formats/pdf/consult/ dimethy/ document-consultation-eng.pdf. Accessed 6 July 2022.
34. Gupta R.C. (2012). Placental toxicity. Veterinary Toxicology. 319-336. [DOI: 10.1016/B978-0-12-385926-6.00020-X] [DOI:10.1016/B978-0-12-385926-6.00020-X]
35. Haschek W.M., Rousseaux C.G., Wallig M.A. (2013). Mycotoxins. In: Haschek W.M., Voss K.A. (Editors). Haschek and rousseaux's handbook of toxicologic pathology. 3rd edition. Academic Press, London, UK. pp: 1187-1258. [DOI: 10.1016/B978-0-12-415759-0.00039-X] [DOI:10.1016/B978-0-12-415759-0.00039-X]
36. Health Matters. (2022). Aflatoxin group: (B1, B2, G1, G2). URL: https:// healthmatters.io/understand-blood-test-results/ aflatoxin-group-b1-b2-g1-g2. Accessed 4 August 2022.
37. Hubbard B.R., Putman L.I., Techtmann S., Pearce J.M. (2021). Open source vacuum oven design for low-temperature drying: performance evaluation for recycled PET and biomass. Journal of Manufacturing and Materials Processing. 5: 52. [DOI: 10.3390/ jmmp5020052] [DOI:10.3390/jmmp5020052]
38. Kennedy D. (1993). Leaf concentrate: a field guide for small scale programs. Leaf for Life. Interlachen, FL, USA.
39. Koneswaran G., Nierenberg D. (2008). Global farm animal production and global warming: impacting and mitigating climate change. Environmental Health Perspectives. 116: 578-582. [DOI: 10.1289/ehp.11034] [DOI:10.1289/ehp.11034] [PMID] [PMCID]
40. Lal R. (2009). Soil quality impacts of residue removal for bioethanol production. Soil and Tillage Research. 102: 233-241. [DOI: 10.1016/j.still.2008.07.003] [DOI:10.1016/j.still.2008.07.003]
41. McClements D.J., Barrangou R., Hill C., Kokini J.L., Lila M.A., Meyer A.S., Yu L. (2021). Building a resilient, sustainable, and healthier food supply through innovation and technology. Annual Review of Food Science and Technology. 12: 1-28. [DOI: 10.1146/annurev-food-092220- 030824] [DOI:10.1146/annurev-food-092220-030824] [PMID]
42. Mekonnen M.M., Hoekstra A.Y. (2012). A global assessment of the water footprint of farm animal products. Ecosystems. 15: 401-415. [DOI: 10.1007/ s10021-011-9517-8] [DOI:10.1007/s10021-011-9517-8]
43. Mottaghi M., Meyer T.K., Tieman R.J., Denkenberger D., Pearce J.M. (2023). Yield and toxin analysis of leaf protein concentrate from common North American coniferous trees. Biomass. 3: 163-187. [DOI: 10.3390/ biomass3020011] [DOI:10.3390/biomass3020011]
44. National Center for Biotechnology Information. (2022a). PubChem compound summary for CID 186907, aflatoxin B1. URL: https://pubchem.ncbi.nlm.nih.gov/ compound/186907#section=Toxicological-Information. Accessed 4 August 2022.
45. National Center for Biotechnology Information. (2022b). PubChem compound summary for CID 3086, dimethyl dicarbonate.URL: https://pubchem.ncbi.nlm.nih.gov/ compound/Dimethyl-dicarbonate. Accessed 6 July 2022.
46. National Pesticide Information Center (NPIC). (2022). Signal words topic fact sheet. URL: http://npic.orst.edu/ factsheets/signalwords. pdf. Accessed 19 July 2022.
47. Oberloier S., Pearce J.M. (2018). General design procedure for free and open-source hardware for scientific equipment. Designs. 2: 2. [DOI: 10.3390/ designs2010002] [DOI:10.3390/designs2010002]
48. Obi F.O., Ugwuishiwu B.O., Nwakaire J.N. (2016). Agricultural waste concept, generation, utilization and management. Nigerian Journal of Technology. 35: 957-964. [DOI: 10.4314/njt.v35i4.34] [DOI:10.4314/njt.v35i4.34]
49. Pearce J.M. (2022). Strategic investment in open hardware for national security. Technologies. 10: 53. [DOI: 10.3390/ technologies 10020053] [DOI:10.3390/technologies10020053]
50. Pearce J.M. (2023). Supporting material for toxic analysis of leaf protein concentrate of common agricultural residues. OSF. [DOI: 10.17605/OSF.IO/H5VSE].
51. Pearce J.M., Khaksari M., Denkenberger D. (2019). Preliminary automated determination of edibility of alternative foods: non-targeted screening for toxins in red maple leaf concentrate. Plants. 8: 110. [DOI: 10.3390/plants8050110] [DOI:10.3390/plants8050110] [PMID] [PMCID]
52. Pham A., García Martínez J.B., Brynych V., Stormbjorne R., Pearce J.M., Denkenberger D.C. (2022). Nutrition in abrupt sunlight reduction scenarios: envisioning feasible balanced diets on resilient foods. Nutrients. 14: 492. [DOI: 10.3390/nu14030492] [DOI:10.3390/nu14030492] [PMID] [PMCID]
53. Reddy N., Yang Y. (2005). Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology. 23: 22-27. [DOI: 10.1016/j.tibtech.2004. 11.002] [DOI:10.1016/j.tibtech.2004.11.002] [PMID]
54. Rivers M., Hinge M., Martínez J.G., Tieman R., Jaeck V., Butt T., Denkenberger D. (2022). Deployment of resilient foods can greatly reduce famine in an abrupt sunlight reduction scenario. [DOI: 10.21203/rs/3/rs-1446444/v1] [DOI:10.21203/rs.3.rs-1446444/v1]
55. Scarborough P., Appleby P.N., Mizdrak A., Briggs A.D.M., Travis R.C., Bradbury K.E., Key T.J. (2014). Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Climatic Change. 125: 179-192. [DOI: 10.1007/s10584-014-1169-1] [DOI:10.1007/s10584-014-1169-1] [PMID] [PMCID]
56. Schymanski E.L., Jeon J., Gulde R., Fenner K., Ruff M., Singer H.P., Hollender J. (2014). Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environmental Science and Technology. 48: 2097-2098. [DOI: 10.1021/es5002105] [DOI:10.1021/es5002105] [PMID]
57. Schymanski E.L., Singer H.P., Slobodnik J., Ipolyi I.M., Oswald P., Krauss M., Schulze T., Haglund P., Letzel T., Grosse S., Thomaidis N.S., Bletsou A., et al. (2015). Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Analytical and Bioanalytical Chemistry. 407: 6237-6255. [DOI: 10.1007/s00216-015-8681-7] [DOI:10.1007/s00216-015-8681-7] [PMID]
58. Scott P.M., Zhao W., Feng S., Lau B.P.-Y. (2012). Alternaria toxins alternariol and alternariol monomethyl ether in grain foods in Canada. Mycotoxin Research. 28: 261-266. [DOI: 10.1007/s12550-012-0141-z] [DOI:10.1007/s12550-012-0141-z] [PMID] [PMCID]
59. Sumner L.W., Amberg A., Barrett D., Beale M.H., Beger R., Daykin C.A., Fan T.W.-M., Fiehn O., Goodacre R., Griffin J.L., Hankemeier T. (2007). Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics. 3: 211-221. [DOI: 10.1007/s11306-007-0082-2] [DOI:10.1007/s11306-007-0082-2] [PMID] [PMCID]
60. Throup J., Martínez J.B.G., Bals B., Cates J., Pearce J.M., Denkenberger D.C. (2022). Rapid repurposing of pulp and paper mills, biorefineries, and breweries for lignocellulosic sugar production in global food catastrophes. Food and Bioproducts Processing, 131: 22-39. [DOI: 10.1016/j.fbp.2021.10.012] [DOI:10.1016/j.fbp.2021.10.012]
61. Tzachor A., Richards C.E., Holt L. (2021). Future foods for risk-resilient diets. Nature Food. 2: 326-329. [DOI: 10.1038/s43016-021-00269-x] [DOI:10.1038/s43016-021-00269-x] [PMID]
62. Ugwoke B., Tieman R., Mill A., Denkenberger D., Pearce J.M. (2023). Quantifying alternative food potential of agricultural residue in rural communities of sub-saharan Africa. Biomass. 3: 138-162. [DOI: 10.3390/ biomass3020010] [DOI:10.3390/biomass3020010]
63. Varga J., Frisvad J.C., Samson R.A. (2011). Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Studies in Mycology. 69: 57-80. [DOI: 10.3114/sim.2011.69.05] [DOI:10.3114/sim.2011.69.05] [PMID] [PMCID]
64. Woern A.L., McCaslin J.R., Pringle A.M., Pearce J.M. (2018). RepRapable recyclebot: open source 3-D printable extruder for converting plastic to 3-D printing filament. HardwareX. 4: e00026. [DOI: 10.1016/j.ohx.2018.e00026] [DOI:10.1016/j.ohx.2018.e00026]
65. Xia L., Robock A., Scherrer K., Harrison C.S., Bodirsky B.L., Weindl I., Jägermeyr J., Bardeen C.G., Toon O.B., Heneghan R. (2022). Global food insecurity and famine from reduced crop, marine fishery and livestock production due to climate disruption from nuclear war soot injection. Nature Food. 3: 586-596. [DOI: 10.1038/s43016-022-00573-0] [DOI:10.1038/s43016-022-00573-0] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb