Volume 10, Issue 3 (September 2023)                   J. Food Qual. Hazards Control 2023, 10(3): 135-141 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fasulkova R, Orozova P, Stratev D. Identification of Vibrio parahemolyticus Isolated from Seafood via Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry. J. Food Qual. Hazards Control 2023; 10 (3) :135-141
URL: http://jfqhc.ssu.ac.ir/article-1-1089-en.html
Department of Food Quality and Safety, and Veterinary Legislation, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria , rumyana.fasulkova@trakia-uni.bg
Abstract:   (215 Views)
Background: Vibrio parahaemolyticus is the most common cause of human infections of all members of the Vibrio genus, accounting for between 31 and 50% of the food poisoning cases. Consumption of food contaminated with V. parahaemolyticus can cause severe digestive infection with symptoms of watery or bloody diarrhoea, stomach pain, vomiting, fever, and dehydration. The objective of the study was to establish the reliability of Matrix-Assisted Laser Desorption/Ionization Time оf Flight Mass Spectrometry (MALDI-TOF MS) for identifying V. parahaemolyticus isolated from seafood marketed for human consumption.
Methods: A hundred and eighty seafood samples including mussels (Mytilus galloprovincialis), veined rapa whelks (Rapana venosа), bluefish (Pomatomus saltatrix), horse mackerel (Trachurus mediterraneus), gilthead seabream (Sparus aurata), sea bass (Dicentrarchus labrax), Atlantic salmon (Salmo salar), whiteleg shrimp (Litopenaeus vannamei), Argentine shortfin squid (Illex argentinus), and oysters (Ostreidae) were tested by Polymerase Chain Reaction (PCR) and MALDI-TOF MS for the presence of V. parahaemolyticus.
Results: Of the tested 103 isolates, 44 (43%) samples were identified as V. parahaemolyticus by PCR, while 41 (40%) samples were confirmed as V. parahaemolyticus by MALDI-TOF MS. The PCR analysis using non-parametric t-test for comparison of the proportions confirmed 93% of the results obtained by MALDI-TOF MS.
Conclusion: MALDI-TOF MS showed high discriminative capacity and can be used for high reliability fast identification of V. parahaemolyticus in seafood samples.

DOI: 10.18502/jfqhc.10.3.13644
Full-Text [PDF 537 kb]   (75 Downloads)    
Type of Study: Original article | Subject: Special
Received: 23/04/03 | Accepted: 23/09/05 | Published: 23/09/30

References
1. Akimowicz M., Bucka-Kolendo J. (2020). MALDI-TOF MS-application in food microbiology. Acta Biochimica Polonica. 67: 327-332. [DOI: 10.18388/abp.2020_5380] [DOI:10.18388/abp.2020_5380] [PMID]
2. Amato E., Riess M., Thomas-Lopez D., Linkevicius M., Pitkänen T., Wołkowicz T., Rjabinina J., Jernberg C., Hjertqvist M., MacDonald E., Antony-Samy J.K., Bjerre K.D., et al. (2022). Epidemiological and microbiological investigation of a large increase in vibriosis, northern Europe, 2018. Euro Surveillance. 27: 2101088. [DOI: 10.2807/1560-7917.ES.2022.27.28. 2101088] [DOI:10.2807/1560-7917.ES.2022.27.28.2101088] [PMID] [PMCID]
3. Böhme K., Antelo S.C., Fernández-No I.C., Quintela-Baluja M., Barros-Velázquez J., Cañas B., Calo-Mata P. (2016). Detection of foodborne pathogens using MALDI-TOF mass spectrometry. In: Barros-Velázquez J. (Editor). Antimicrobial food packaging. pp: 203-214. Academic Press, Cambridge, MA. [DOI: 10.1016/B978-0-12-800723-5.00015-2] [DOI:10.1016/B978-0-12-800723-5.00015-2]
4. Bonny S.Q., Hossain M.A.M., Uddin S.M.K., Pulingam T., Sagadevan S., Johan M.R. (2022). Current trends in polymerase chain reaction based detection of three major human pathogenic vibrios. Critical Reviews in Food Science and Nutrition. 62: 1317-1335. [DOI: 10.1080/10408398.2020.1841728] [DOI:10.1080/10408398.2020.1841728] [PMID]
5. Bruker. (2016). MBT compass user manual Revision C. Bruker Daltonics, Inc., Bremen
6. Centers for Disease Control and Prevention (CDC). (2019). Cholera and other vibrio illness surveillance (COVIS). URL: https://www.cdc.gov/vibrio/surveillance.html.
7. Cherkaoui A., Hibbs J., Emonet S., Tangomo M., Girard M., Francois P., Schrenzel J. (2010). Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. Journal of Clinical Microbiology. 48: 1169-1175. [DOI: 10.1128/JCM.01881-09] [DOI:10.1128/JCM.01881-09] [PMID] [PMCID]
8. Cho Y., Kim E., Han S.-K., Yang S.-M., Kim M.-J., Kim H.-J., Kim C.-G., Choo D.-W., Kim Y.-R., Kim H.-Y. (2017). Rapid identification of Vibrio species isolated from the southern coastal regions of Korea by MALDI-TOF mass spectrometry and comparison of MALDI sample preparation methods. Journal of Microbiology and Biotechnology. 27: 1593-1601. [DOI: 10.4014/jmb.1704.04056] [DOI:10.4014/jmb.1704.04056] [PMID]
9. Dieckmann R., Strauch E., Alter T. (2010). Rapid identification and characterization of Vibrio species using whole-cell MALDI-TOF mass spectrometry. Journal of Applied Microbiology. 109: 199-211. [DOI: 10.1111/j.1365-2672.2009.04647.x] [DOI:10.1111/j.1365-2672.2009.04647.x] [PMID]
10. Dietrich J., Hammerl J.A., Johne A., Kappenstein O., Loeffler C., Nöckler K., Richter M.H. (2023). Impact of climate change on foodborne infections and intoxications. Journal of Health Monitoring. 8: 78-92. [DOI: 10.25646/11403]
11. Hazen T.H., Martinez R.J., Chen Y., Lafon P.C., Garrett N.M., Parsons M.B., Bopp C.A., Sullards M.C., Sobecky P.A. (2009). Rapid identification of Vibrio parahaemolyticus by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Applied and Environmental Microbiology. 75: 6745-6756. [DOI: 10.1128/AEM.01171-09] [DOI:10.1128/AEM.01171-09] [PMID] [PMCID]
12. Hoefler F., Pouget-Abadie X., Roncato-Saberan M., Lemarié R., Takoudju E.-M., Raffi F., Corvec S., Le Bras M., Cazanave C., Lehours P., Guimard T., Allix-Béguec C. (2022). Clinical and epidemiologic characteristics and therapeutic management of patients with Vibrio infections, bay of biscay, France, 2001-2019. Emerging Infectious Diseases. 28: 2367-2373. [DOI: 10.3201/eid2812.220748] [DOI:10.3201/eid2812.220748] [PMID] [PMCID]
13. International Organization for Standardization (ISO) 21872-1:2017. (2017). Microbiology of the food chian - horizontal method for the determination of Vibrio Spp. part 1: detection of potentially enteropathogenic Vibrio Parahaemolyticus, Vibrio Cholerae and Vibrio Vulnificus. URL: https://www.iso.org/standard/ 74112.html.
14. Jang K.-S., Kim Y.H. (2018). Rapid and robust MALDI-TOF MS techniques for microbial identification: a brief overview of their diverse applications. Journal of Microbiology. 56: 209-216. [DOI: 10.1007/s12275-018-7457-0] [DOI:10.1007/s12275-018-7457-0] [PMID]
15. Joint FAO/WHO. (2001). Hazard identification, exposure assessment and hazard characterization of Campylobacter spp. in broiler chickens and Vibrio spp. in seafood. URL: https://www.who.int/ publications/i/item/WHO-SDE-PHE-FOS-01.4.
16. Kuda T., Izawa Y., Yoshida S., Koyanagi T., Takahashi H., Kimura B. (2014). Rapid identification of Tetragenococcus halophilus and Tetragenococcus muriaticus, important species in the production of salted and fermented foods, by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Food Control. 35: 419-425. [DOI: 10.1016/j. foodcont.2013.07.039] [DOI:10.1016/j.foodcont.2013.07.039]
17. Le Roux F., Wegner K.M., Baker-Austin C., Vezzulli L., Osorio C.R., Amaro C., Ritchie J.M., Defoirdt T., Destoumieux-Garzón D., Blokesch M., Mazel D., Jacq A., et al. (2015). The emergence of Vibrio pathogens in Europe: ecology, evolution, and pathogenesis (Paris, 11-12th March 2015). Frontiers in Microbiology. 6: 830. [DOI: 10.3389/fmicb.2015.00830] [DOI:10.3389/fmicb.2015.00830]
18. Letchumanan V., Chan K.-G., Lee L.-H. (2014). Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Frontiers in Microbiology. 5: 705. [DOI: 10.3389/fmicb.2014.00705] [DOI:10.3389/fmicb.2014.00705] [PMID] [PMCID]
19. Letchumanan V., Loo K.-Y., Law J.W.-F., Wong S.H., Goh B.-H., Ab Mutalib N.-S., Lee L.-H. (2019). Vibrio parahaemolyticus: the protagonist causing foodborne diseases. Progress in Microbes and Molecular Biology. 2: a0000029. [DOI: 10.36877/ pmmb.a0000029] [DOI:10.36877/pmmb.a0000029]
20. Liébana-Martos C. (2018). Indications, interpretation of results, advantages, disadvantages, and limitations of MALDI-TOF. In: Cobo F. (Editor). The use of mass spectrometry technology (MALDI-TOF) in clinical microbiology. pp: 75-86. Elsevier, Amsterdam, Netherland. [DOI: 10.1016/B978-0-12-814451-0.00005-8] [DOI:10.1016/B978-0-12-814451-0.00005-8]
21. Malainine S.M., Moussaoui W., Prévost G., Scheftel J.-M., Mimouni R. (2013). Rapid identification of Vibrio parahaemolyticus isolated from shellfish, sea water and sediments of the Khnifiss lagoon, Morocco, by MALDI-TOF mass spectrometry. Letters in Applied Microbiology. 56: 379-386. [DOI: 10.1111/lam.12060] [DOI:10.1111/lam.12060] [PMID]
22. Nelapati S., Krishnaiah N. (2010). Detection of total and pathogenic Vibrio parahaemolyticus by polymerase chain reaction using toxR, tdh and trh genes. Veterinary World. 3: 268-271.
23. Park J.Y., Jeon S., Kim J.Y., Park M., Kim S. (2013). Multiplex real-time polymerase chain reaction assays for simultaneous detection of Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. Osong Public Health and Research Perspectives. 4: 133-139. [DOI: 10.1016/j.phrp.2013.04.004] [DOI:10.1016/j.phrp.2013.04.004] [PMID] [PMCID]
24. Pavlovic M., Huber I., Konrad R., Busch U. (2013). Application of MALDI-TOF MS for the identification of food borne bacteria. The Open Microbiology Journal. 7: 135-141. [DOI: 10.2174/1874285801307010135] [DOI:10.2174/1874285801307010135] [PMID] [PMCID]
25. Popović N.T., Kazazić S.P., Strunjak-Perović I., Čož-Rakovac R. (2017). Differentiation of environmental aquatic bacterial isolates by MALDI-TOF MS. Environmental Research. 152: 7-16. [DOI: 10.1016/j.envres.2016.09.020] [DOI:10.1016/j.envres.2016.09.020] [PMID]
26. Sivanesan I., Gopal J., Hasan N., Muthu M. (2023). A systematic assessment of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) application for rapid identification of pathogenic microbes that affect food crops: delivered and future deliverables. RSC Advances. 13: 17297-17314. [DOI: 10.1039/d3ra01633a] [DOI:10.1039/D3RA01633A] [PMID] [PMCID]
27. Tan C.W., Rukayadi Y., Hasan H., Thung T.Y., Lee E., Rollon W.D., Hara H., Kayali A.Y., Nishibuchi M., Radu S. (2020). Prevalence and antibiotic resistance patterns of Vibrio parahaemolyticus isolated from different types of seafood in Selangor, Malaysia. Saudi Journal of Biological Sciences. 27: 1602-1608. [DOI: 10.1016/j.sjbs.2020.01.002] [DOI:10.1016/j.sjbs.2020.01.002] [PMID] [PMCID]
28. Torsvik V., Øvreås L., Thingstad T.F. (2002). Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science. 296: 1064-1066. [DOI: 10.1126/science.1071698] [DOI:10.1126/science.1071698] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb