Volume 5, Issue 2 (June 2018)                   J. Food Qual. Hazards Control 2018, 5(2): 54-60 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sotudeh S, Rabbani Khorasgani M, Etemadifar Z, Zarkesh-Esfahani S. Effects of Spray-Drying, Freeze-Drying and Pasteurization on Microbiological Quality and IgG Level of Bovine Colostrum . J. Food Qual. Hazards Control. 2018; 5 (2) :54-60
URL: http://jfqhc.ssu.ac.ir/article-1-435-en.html
Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran , m.rabbani@biol.ui.ac.ir
Abstract:   (1735 Views)
Background: Nowadays, colostrum has been known as a considerable and valuable by-product of large-scale dairy production in the world. The main objective of this study was to evaluate the effects of pasteurization, spray-drying and freeze-drying methods on bacterial loads and Immunoglobulin G (IgG) level of bovine colostrums.
Methods: Colostrum samples were collected from the first milking postpartum of Iranian Holstein dairy cattle farms. The samples were treated by pasteurization (60 °C for 30 min and 55 °C for 60 min), spray-drying and freeze-drying methods. Standard Plate Counts (SPC), Escherichia coli count, and Total Coliform Count (TCC) were analyzed at days 1, 10, 20, and 30 of storage. Also, IgG level were assessed at the end of 30-day storage. Statistical analysis was performed using SPSS 17.0 (Chicago, IL, USA) software.
Results: Although all four treatments showed direct impact on reduction of SPC, TCC, and E. coli count in colostrum stored at 1, 10, 20, and 30 days, but the spray-drying and freeze-drying methods were significantly (p<0.05) more effective to reduce microbial loads. The mean IgG levels of the samples were 60.35 mg/ml for untreated samples (control); 30.65±6.95 mg/ml for spray-dried treatment; 36.97±6.79 mg/ml for freeze-dried treatment; 28.12±6.53 mg/ml for heated treatment at 60 °C/30 min; and 34.97±9.80 mg/ml for heated treatment at 55 °C/60 min. All four treatments resulted in significant (p<0.05) reduction of the IgG levels.
Conclusion: Considering the obtained results, it seems that freeze-drying and spray-drying methods could be more effective than pasteurization ones to enhance quality and shelf life of bovine colostrum for a long time. 

DOI: 10.29252/jfqhc.5.2.5
Full-Text [PDF 357 kb]   (381 Downloads)    
Type of Study: Original article | Subject: Special
Received: 18/03/14 | Accepted: 18/05/16 | Published: 18/06/23

1. Ameri M., Wilkerson M.J. (2008). Comparison of two commercial radial immunodiffusion assays for detection of bovine immunoglobulin G in newborn calves. Journal of Veterinary Diagnostic Investigation. 20: 333-336. [DOI:10.1177/104063870802000312]
2. Argüello A., Castro N., Capote J., Ginés R., Acosta F., López J.L. (2003). Effects of refrigeration, freezing-thawing and pasteurization on IgG goat colostrum preservation. Small Ruminant Research. 48: 135-139. [DOI:10.1016/S0921-4488(02)00277-8]
3. Brinkworth G.D., Buckley J.D. (2003). Concentrated bovine colostrum protein supplementation reduces the incidence of self-reported symptoms of upper respiratory tract infection in adult males. European Journal of Nutrition. 42: 228-232. [DOI:10.1007/s00394-003-0410-x]
4. Byakwaga H., Kelly M., Purcell D.F.J., French M.A., Amin J., Lewin S.R., Haskelberg H., Kelleher A.D., Garsia R., Boyd M.A., Cooper D.A., Emery S. (2011). Intensification of antiretroviral therapy with raltegravir or addition of hyperimmune bovine colostrum in HIV-Infected patients with suboptimal CD4+ T-Cell response: a randomized controlled trial. The Journal of Infectious Diseases. 204: 1532-1540. [DOI:10.1093/infdis/jir559]
5. Castro N., Capote J., Alvarez S., Arguello A. (2005). Effects of lyophilized colostrum and different colostrum feeding regimens on passive transfer of immunoglobulin G in Majorera goat kids. Journal of Dairy Science. 88: 3650-3654. [DOI:10.3168/jds.S0022-0302(05)73050-2]
6. Chelack B.J., Morley P.S., Haines D.M. (1993). Evaluation of methods for dehydration of bovine colostrum for total replacement of normal colostrum in calves. The Canadian Veterinary Journal. 34: 407-412.
7. Dominguez E., Perez M.D., Calvo M. (1997). Effect of heat treatment on the antigen-binding activity of anti-peroxidase immunoglobulins in bovine colostrum. Journal of Dairy Science. 80: 3182-3187. [DOI:10.3168/jds.S0022-0302(97)76290-8]
8. Elfstrand L., Lindmark-Mansson H., Paulsson M., Nyberg L., Akesson B. (2002). Immunoglobulins, growth factors and growth hormone in bovine colostrum and the effects of processing. International Dairy Journal. 12: 879-887. [DOI:10.1016/S0958-6946(02)00089-4]
9. Elizondo-Salazar J.A., Heinrichs A.J. (2008). Heat treating bovine colostrum 1. The Professional Animal Scientist. 24: 530-538. [DOI:10.15232/S1080-7446(15)30902-5]
10. Elizondo-Salazar J.A., Heinrichs A.J. (2009). Feeding heat-treated colostrum or unheated colostrum with two different bacterial concentrations to neonatal dairy calves. Journal of Dairy Science. 92: 4565-4571. [DOI:10.3168/jds.2009-2188]
11. Elizondo-Salazar J.A., Jayarao B.M., Heinrichs A.J. (2010). Effect of heat treatment of bovine colostrum on bacterial counts, viscosity, and immunoglobulin G concentration. Journal of Dairy Science. 93: 961-967. [DOI:10.3168/jds.2009-2388]
12. Fecteau G., Baillargeon P., Higgins R., Paré J., Fortin M. (2002). Bacterial contamination of colostrum fed to newborn calves in Québec dairy herds. The Canadian Veterinary Journal. 43: 523-527.
13. Gapper L.W., Copestake D.E., Otter D.E., Indyk H.E. (2007). Analysis of bovine immunoglobulin G in milk, colostrum and dietary supplements: a review. Analytical and Bioanalytical Chemistry. 389: 93-109. [DOI:10.1007/s00216-007-1391-z]
14. Godden S., McMartin S., Feirtag J., Stabel J., Bey R., Goyal S., Metzger L., Fetrow J., Wells S., Chester-Jones H. (2006). Heat-treatment of bovine colostrum. II: effects of heating duration on pathogen viability and immunoglobulin G. Journal of Dairy Science. 89: 3476-3483. [DOI:10.3168/jds.S0022-0302(06)72386-4]
15. Godden S.M., Smolenski D.J., Donahue M., Oakes J.M., Bey R., Wells S., Sreevatsan S., Stabel J., Fetrow J. (2012). Heat-treated colostrum and reduced morbidity in preweaned dairy calves: results of a randomized trial and examination of mechanisms of effectiveness. Journal of Dairy Science. 95: 4029-4040. [DOI:10.3168/jds.2011-5275]
16. Hadorn U., Blum J.W. (1997). Effects of feeding colostrum, glucose or water on the first day of life on plasma immunoglobulin G concentrations and gamma-glutamyltransferase activities in calves. Transboundary and Emerging Diseases. 44: 531-537.
17. Houser B.A., Donaldson S.C., Kehoe S.I., Heinrichs A.J., Jayarao B.M. (2008). A survey of bacteriological quality and the occurrence of Salmonella in raw bovine colostrum. Foodborne Pathogens and Disease. 5: 853-858. [DOI:10.1089/fpd.2008.0141]
18. Institute of Standards and Industrial Research of Iran (ISIRI). (2008). Horizontal method for the detection and enumeration of coliforms-Most probable number technique. National Standard No. 11166. URL: http://standard. isiri. gov.ir/ Standard View .aspx?Id=13712.
19. Institute of Standards and Industrial Research of Iran (ISIRI). (2015). Horizontal method for the enumeration of microorganisms-Part 1: Colony count at 30 °C by the pour plate technique. National Standard No. 5272-1. URL: http://standard. isiri. gov.ir/ Standard View .aspx?Id=43263.
20. Institute of Standards and Industrial Research of Iran (ISIRI). (2016). Enumeration of Presumptive Escherichia coli-Most probable number (MPN). National Standard No. 5234. URL: http://standard.isiri.gov.ir/StandardView.aspx?Id=42510.
21. Klobasa F., Goel M.C., Werhahn E. (1998). Comparison of freezing and lyophilizing for preservation of colostrum as a source of immunoglobulins for calves. Journal of Animal Science. 76: 923-926. [DOI:10.2527/1998.764923x]
22. Lilius E.M., Marnila P. (2001). The role of colostral antibodies in prevention of microbial infections. Current Opinion in Infectious Diseases. 14: 295-300. [DOI:10.1097/00001432-200106000-00008]
23. Marnila P., Gill H.S. (2000). Milk immunoglobulins and complement factors. British Journal of Nutrition. 84: 75-80.
24. McGuirk S.M., Collins M. (2004). Managing the production, storage, and delivery of colostrum. Veterinary Clinics of North America Food Animal Practice. 20: 593-603. [DOI:10.1016/j.cvfa.2004.06.005]
25. McMartin S., Godden S., Metzger L., Feirtag J., Bey R., Stabel J., Goyal S., Fetrow J., Wells S., Chester-Jones H. (2006). Heat treatment of bovine colostrum. I: effects of temperature on viscosity and immunoglobulin G level. Journal of Dairy Science. 89: 2110-2118. [DOI:10.3168/jds.S0022-0302(06)72281-0]
26. Meylan M., Rings D.M., Shulaw W.P., Kowalski J.J., Bech-Nielsen S., Hoffsis G.F. (1996). Survival of Mycobacterium paratuberculosis and preservation of immunoglobulin G in bovine colostrum under experimental conditions simulating pasteurization. American Journal of Veterinary Research. 57:1580-1585.
27. Phipps A.J., Beggs D.S., Murray A.J., Mansell P.D., Stevenson M.A., Pyman M.F. (2016). Survey of bovine colostrum quality and hygiene on northern Victorian dairy farms. Journal of Dairy Science. 99: 8981-8990. [DOI:10.3168/jds.2016-11200]
28. Playford R.J., Macdonald C.E., Johnson W.S. (2000). Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. The American Journal of Clinical Nutrition. 72: 5-14. [DOI:10.1093/ajcn/72.1.5]
29. Ramya S.B., Ramasamy D., Dhineshkumar V. (2016). Effects of refrigeration, deep freezing-spray drying and pasteurization on IgG bovine colostrum preservation. International Journal of Dairy Processing and Research. 3: 35-37.
30. Santos G.d., Silva J.T.d., Santos F.H.d.R., Bittar C.M.M. (2017). Nutritional and microbiological quality of bovine colostrum samples in Brazil. Revista Brasileira de Zootecnia. 46: 72-79. [DOI:10.1590/s1806-92902017000100011]
31. Solomons N.W. (2002). Modulation of the immune system and the response against pathogens with bovine colostrum concentrates. European Journal of Clinical Nutrition. 56: 24-28. [DOI:10.1038/sj.ejcn.1601480]
32. Stabel J.R. (2008). Pasteurization of colostrum reduces the incidence of paratuberculosis in neonatal dairy calves. Journal of Dairy Science. 91: 3600-3606. [DOI:10.3168/jds.2008-1107]
33. Stewart S., Godden S., Bey R., Rapnicki P., Fetrow J., Farnsworth R., Scanlon M., Arnold Y., Clow L., Mueller K., Ferrouillet C. (2005). Preventing bacterial contamination and proliferation during the harvest, storage, and feeding of fresh bovine colostrum. Journal of Dairy Science. 88: 2571-2578. [DOI:10.3168/jds.S0022-0302(05)72933-7]
34. Trujillo A.J., Castro N., Quevedo J.M., Argüello A., Capote J., Guamis B. (2007). Effect of heat and high-pressure treatments on microbiological quality and immunoglobulin G stability of caprine colostrum. Journal of Dairy Science. 90: 833-839. [DOI:10.3168/jds.S0022-0302(07)71567-9]
35. Yurchenko S., Sats A., Poikalainen V., Karus A. (2016). Method for determination of fatty acids in bovine colostrum using GC-FID. Food Chemistry. 212: 117-122. [DOI:10.1016/j.foodchem.2016.05.103]

Add your comments about this article : Your username or Email:

© 2019 All Rights Reserved | Journal of food quality and hazards control

Designed & Developed by : Yektaweb