Volume 6, Issue 1 (March 2019)                   J. Food Qual. Hazards Control 2019, 6(1): 30-36 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bodunde R, Ogidi C, Akinyele B. Load and Antibiotic Susceptibility Pattern of Microorganisms in Muscle Foods Sold in Akure, Southwest Nigeria. J. Food Qual. Hazards Control. 2019; 6 (1) :30-36
URL: http://jfqhc.ssu.ac.ir/article-1-516-en.html
Department of Microbiology, The Federal University of Technology, PMB 704, Akure, Nigeria , clementogidi@yahoo.com
Abstract:   (2008 Views)
Background: Muscle foods, notably red meat, poultry meat, and fish are the first choice of animal source food with adequate protein for human. The present study was undertaken to analyze the load and antibiotic susceptibility pattern of microorganisms in muscle foods sold in Akure, Southwest Nigeria.
Methods: Hundred muscle food samples, including meat and fish were collected from different locations (A-E) of Akure, Nigeria and examined microbiologically using cultural techniques, biochemical tests, and analytical profile index. Antibiotic susceptibility patterns were also determined in isolated microorganisms from muscle foods against different antibiotics. Data were analyzed using SPSS software version 17.0.
Results: The highest (p<0.05) total viable bacterial count (8.3×106 CFU/g) were obtained from pork, including with 6.0×105 CFU/g for Staphylococcus and 5.8×105 CFU/g for Salmonella-Shigella. Mackerel collected from location D (Kings market) had the highest (p<0.05) bacterial count of 9.97×105 CFU/g, followed by 8.57×105 CFU/g, and 7.03×105 CFU/g in locations C and E, respectively. Low fungal counts were recorded ranged from 1.0×102 to 1.30×102 spore forming unit/g. The highest (p<0.05) occurrence of 26.50% was observed for Escherichia coli. The isolated microorganisms displayed varying degree of resistance (33.3 to 100%) to commonly used antibiotics.
Conclusion: The microorganisms found in muscle foods from Akure, Nigeria could be considered as result of poor hygiene of the retailers or handlers. Also, presence of the multidrug resistant bacteria in muscle foods distributed in this region could pose a serious risk factor to public health.  

DOI: 10.18502/jfqhc.6.1.456
Full-Text [PDF 537 kb]   (520 Downloads)    
Type of Study: Original article | Subject: Special
Received: 18/10/16 | Accepted: 19/02/10 | Published: 19/03/08

1. Ariyawansa S., Ginigaddarage P., Jinadasa K., Chandrika J.M., Arachchi G.G., Ariyaratne S. (2016). Assessment of microbiological and bio-chemical quality of fish in a supply chain in Negombo, Sri Lanka. Procedia Food Science. 6: 246-252. [DOI: 10.1016/j.profoo.2016.02.032] [DOI:10.1016/j.profoo.2016.02.032]
2. Bakhtiary F., Sayevand H.R., Remely M., Hippe B., Hosseini H., Haslberger A.G. (2016). Evaluation of bacterial contamination sources in meat production line. Journal of Food Quality. 39:750-756. [DOI:10.1111/jfq.12243] [DOI:10.1111/jfq.12243]
3. Bohaychuk V.M., Gensler G.E., Barrios P.R. (2011). Microbiological baseline study of beef and pork carcasses from provincially inspected abattoirs in Alberta, Canada. The Canadian Veterinary Journal. 52: 1095-1100. [PMID] [PMCID]
4. Boss R., Overesch G., Baumgartner A. (2016). Antimicrobial resistance of Escherichia coli, Enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from raw fish and seafood imported into Switzerland. Journal of Food Protection. 79: 1240-1246. [DOI: 10.4315/0362-028X.JFP-15-463] [DOI:10.4315/0362-028X.JFP-15-463]
5. Cappuccino G.J., Sherman N. (1999). Microbiology: a laboratory manual. Benjamin/Cummings Publishing, California.
6. Clinical and Laboratory Standards Institute (CLSI). (2012). Performance standards for antimicrobial susceptibility testing; approve standard seventh ed. CLSI Document M02-A11. Clinical and Laboratory Standards Institute, Pennsylvania.
7. Cowan S.T., Steel K.J. (1993). Manual for the identification of medical bacteria. 3rd edition, Cambridge University Press, UK.
8. Datta S., Akter A., Shah I.G., Fatema K., Islam T.H., Bandyopadhyay A., Khan Z.U.M., Biswas D. (2012). Microbiological quality assessment of raw meat and meat products and antibiotic susceptibility of isolated Staphylococcus aureus. Agriculture, Food and Analytical Bacteriology. 2: 187-194.
9. Dhama K., Rajagunalan S., Chakraborty S., Verma A.K., Kumar A., Tiwari R., Kapoor S. (2013). Food-borne pathogens of animal origin-diagnosis, prevention, control and their zoonotic significance: a review. Pakistan Journal of Biological Sciences. 16: 1076-1085. [DOI: 10.3923/pjbs.2013.1076.1085] [DOI:10.3923/pjbs.2013.1076.1085]
10. Doménech E., Amorós J.A., Pérez-Gonzalvo M., Escriche I. (2011). Implementation and effectiveness of the HACCP and pre-requisites in food establishments. Food Control. 22: 1419-1423. [DOI:10.1016/j.foodcont.2011.03.001] [DOI:10.1016/j.foodcont.2011.03.001]
11. Done H.Y., Venkatesan A.K., Halden R.U. (2015). Does the recent growth of aquaculture create antibiotic resistance threats different from those associated with land animal production in agriculture? The American Association of Pharmaceutical Scientists Journal. 17: 513-524. [DOI: 10.1208/s12248-015-9722-z] [DOI:10.1208/s12248-015-9722-z]
12. Doyle M.E. (2015). Multidrug-resistant pathogens in the food supply. Foodborne Pathogens and Disease. 12: 261-279. [DOI: 10.1089/fpd.2014.1865] [DOI:10.1089/fpd.2014.1865]
13. Economou V., Gousia P. (2015). Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infection and Drug Resistance. 8: 49-61. [DOI: 10.2147/IDR.S55778] [DOI:10.2147/IDR.S55778]
14. Ed-dra A., Rhazi Filali F., El Allaoui A., Aboulkacem A. (2017). Factors influencing the bacteriological quality of sausages sold in Meknes city, Morocco. International Food Research Journal. 24: 933-938.
15. Forshell L.P., Wierup M. (2006). Salmonella contamination: a significant challenge to the global marketing of animal food products. Scientific and Technical Review of the Office International des Epizooties. 25: 541-554.
16. Garedew L., Hagos Z., Addis Z., Tesfaye R., Zegeye B. (2015). Prevalence and antimicrobial susceptibility patterns of Salmonella isolates in association with hygienic status from butcher shops in Gondar town, Ethiopia. Antimicrobial Resistance and Infection Control. 4:21. [DOI: 10.1186/s13756-015-0062-7] [DOI:10.1186/s13756-015-0062-7]
17. Imarhiagbe E.E., Ofuya M.E., Osarenotor O., Ekhaise F. (2016). Antibiotic sensitivity pattern of microorganisms isolated from smoked and frozen fishes sold in Benin and Warri metropolis. Nigerian Journal of Biotechnology. 31: 40-45. [DOI: 10.4314/ njb.v31i1.6] [DOI:10.4314/njb.v31i1.6]
18. Iroha I.R., Ugbo E.C., Ilang D.C., Oji A.E., Ayogu T.E. (2011). Bacteria contamination of raw meat sold in Abakaliki, Ebonyi State Nigeria. Journal of Public Health and Epidemiology. 3: 49-53.
19. Jay J.M., Loessner M.J., Golden D.A. (2005). Modern food microbiology. 7th edition. Springer Science, New York.
20. Kumar P., Rao J., Haribabu Y., Manjunath. (2014). Microbiological quality of meat collected from municipal slaughter houses and retail meat shops from Hyderabad Karnataka Region, India. APCBEE Procedia. 8: 364-369. [DOI: 10.1016/j.apcbee.2014. 09.001]
21. Lawrie R.A., Ledward D.A. (2006). Lawrie's meat science. Woodhead, Cambridge, England. [DOI:10.1533/9781845691615]
22. Lee K.S., Samuel L., Kong C.Y., Toh S.C. (2016). Water quality and microbiological risk associated with multiple antibiotic resistance (MAR) bacteria in water of fish facility. International Food Research Journal. 23: 1255-1261.
23. Marshall B.M., Levy S.B. (2011). Food animals and antimicrobials: impacts on human health. Clinical Microbiology Reviews. 24: 718-733. [DOI: 10.1128/CMR.00002-11] [DOI:10.1128/CMR.00002-11]
24. Mezali L., Hamdi T.M. (2012). Prevalence and antimicrobial resistance of Salmonella isolated from meat and meat products in Algiers (Algeria). Foodborne Pathogens and Disease. 9: 522-529. [DOI: 10.1089/fpd.2011.1032] [DOI:10.1089/fpd.2011.1032]
25. Mrdovic B., Raseta M., Brankovic-Lazic I., Milijasevic M., Baltic B., Nastasijevic I. (2017). Pigs and cattle slaughter process hygiene in a large scale and a small scale abattoir: a report from one county in Serbia. Meat Technology. 58: 65-72.
26. Ogidi O.C., Oyetayo V.O., Akinyele B.J. (2016). Microbial quality and antibiotic sensitivity pattern of isolated microorganisms from street foods sold in Akure metropolis, Nigeria. Jordan Journal of Biological Sciences. 9: 227-234.
27. Pereira P.M.D.C.C., Vicente A.F.D.R.B. (2013). Meat nutritional composition and nutritive role in the human diet. Meat Science. 93: 586-592. [DOI: 10.1016/j.meatsci.2012.09.018] [DOI:10.1016/j.meatsci.2012.09.018]
28. Samaxa R.G., Matsheka M.I., Mpoloka S.W., Gashe B.A. (2012). Prevalence and antimicrobial susceptibility of Salmonella isolated from a variety of raw meat sausages in Gaborone (Botswana) retail stores. Journal of Food Protection.75: 637-642. [DOI: 10.4315/0362-028X.JFP-11-438] [DOI:10.4315/0362-028X.JFP-11-438]
29. Samson R.A., Houbraken J., Thrane U., Frisvad J.C., Andersen B. (2010). Fungi and indoor fungi, CBS laboratory manual series. CBS-KNAW fungal biodiversity centre, Utrecht, The Netherlands. pp: 67-79.
30. Sofos J.N. (2008). Challenges to meat safety in the 21st century. Meat Science. 78: 3-13. [DOI: 10.1016/j.meatsci.2007.07.027] [DOI:10.1016/j.meatsci.2007.07.027]
31. Soltan Dallal M.M., Sharifi Yazdi M.K. Mirzaei N., Kalantar E. (2014). Prevalence of Salmonella spp. in packed and unpacked red meat and chicken in South of Tehran. Jundishapur Journal of Microbiology. 7: e9254. [DOI: 10.5812/jjm.9254] [DOI:10.5812/jjm.9254]
32. Swanson D., Block R., Mousa S.A. (2012). Omega-3 fatty acids EPA and DHA: health benefits throughout life. Advances in Nutrition. 3: 1-7. [DOI: 10.3945/an.111.000893] [DOI:10.3945/an.111.000893]
33. Teka W., Nölkes D., Getachew Y., Mulachew M. (2017). Microbiological quality of frozen raw and undercooked Nile tilapia (Oreochromis niloticus) fillets and food safety practices of fish handlers in Arba Minch town, SNNPR, Ethiopia. Journal of Veterinary Medicine and Animal Health. 9: 55-62. [DOI: 10. 5897/JVMAH2015.0424] [DOI:10.5897/JVMAH2015.0424]
34. Thanigaivel G., Anandhan A.S. (2015). Isolation and characterization of microorganisms from raw meat obtained from different market places in and around Chennai. Journal of Pharmaceutical, Chemical and Biological Sciences. 3: 295-301.
35. Wogu M.D., Maduakor C.C. (2010). Evaluation of microbial spoilage of some aquacultured fresh fish in Benin City Nigeria. Ethiopian Journal of Environmental Studies and Management. 3: 18-22. [DOI: 10.4314/ejesm.v3i3.63960] [DOI:10.4314/ejesm.v3i3.63960]
36. Wu S., Huang J., Wu Q., Zhang J., Zhang F., Yang X., Wu H., Zeng H., Chen M., Ding Y., Wang J., Lei T., et al. (2018). Staphylococcus aureus isolated from retail meat and meat products in China: incidence, antibiotic resistance and genetic diversity. Frontiers in Microbiology. 9: 2767. [DOI: 10.3389/fmicb. 2018.02767] [DOI:10.3389/fmicb.2018.02767] [PMID] [PMCID]
37. Zhou G.H., Xu X.L., Liu Y. (2010). Preservation technologies for fresh meat-a review. Meat Science. 86: 119-128. [DOI: 10. 1016/j.meatsci.2010.04.033] [DOI:10.1016/j.meatsci.2010.04.033] [PMID]

Add your comments about this article : Your username or Email:

© 2021 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb