Volume 6, Issue 3 (September 2019)                   J. Food Qual. Hazards Control 2019, 6(3): 82-92 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aredo V, Velásquez L, Carranza-Cabrera J, Siche R. Predicting of the Quality Attributes of Orange Fruit Using Hyperspectral Images. J. Food Qual. Hazards Control. 2019; 6 (3) :82-92
URL: http://jfqhc.ssu.ac.ir/article-1-575-en.html
Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo. Av. Juan Pablo II s/n. Ciudad Universitaria, Trujillo, Peru , rsiche@unitru.edu.pe
Abstract:   (60 Views)
Background: Hyperspectral image analysis is a fast and non-destructive technique that is being used to measure quality attributes of food products. This research investigated the feasibility of predicting internal quality attributes, such as Total Soluble Solids (TSS), pH, Titratable Acidity (TA), and maturity index (TSS/TA); and external quality attributes such as color components (L*, a*, b*) as well as Color Index (CI) of Valencia orange fruit using hyperspectral reflectance imaging in the range of 400-1000 nm.
Methods: Oranges were scanned by the system in order to build full models for predicting quality attributes using partial least squares regression. Optimal wavelengths were identified using the regression coefficients from full models, which were used to build simplified models by multiple linear regression. The coefficient of determination of prediction (R2p) and the Standard Error of Prediction (SEP) were used to measure the performance of the models obtained.
Results: Full models for internal quality attributes had low performance (R2p<0.3, SEP>50%). Full models for external quality attributes presented a high performance for L* (R2p=0.898, SEP=19%), a* (R2p=0.952, SEP=13%), b* (R2p=0.922, SEP=20%), and CI (R2p=0.972, SEP=12%). The simplified models presented similar performance to those obtained for external quality attributes.
Conclusion: Hyperspectral reflectance imaging has potential for predicting color of oranges in an objective and noncontact way.

DOI: 10.18502/jfqhc.6.3.1381
Full-Text [PDF 786 kb]   (35 Downloads)    
Type of Study: Original article | Subject: Special
Received: 19/05/01 | Accepted: 19/07/25 | Published: 19/09/03

References
1. Aredo V., Velásquez L., Siche R. (2017). Prediction of beef marbling using Hyperspectral Imaging (HSI) and Partial Least Squares Regression (PLSR). Scientia Agropecuaria. 8: 169-174. [DOI: 10.17268/sci.agropecu.2017.02.09] [DOI:10.17268/sci.agropecu.2017.02.09]
2. Association of Official Analytical Chemists (AOAC). (2005). Official methods of analysis. AOAC International, Gaithersburg.
3. Barreto A., Cruz-Tirado J.P., Siche R., Quevedo R. (2018). Determination of starch content in adulterated fresh cheese using hyperspectral imaging. Food Bioscience. 21: 14-19. [DOI: 10.1016/j.fbio.2017.10.009] [DOI:10.1016/j.fbio.2017.10.009]
4. Cayuela J.A. (2008). Vis/NIR soluble solids prediction in intact oranges (Citrus sinensis L.) cv. Valencia Late by reflectance. Postharvest Biology and Technology. 47: 75-80. [DOI: 10. 1016/j.postharvbio.2007.06.005] [DOI:10.1016/j.postharvbio.2007.06.005]
5. Cayuela J.A., Weiland C. (2010). Intact orange quality prediction with two portable NIR spectrometers. Postharvest Biology and Technology. 58: 113-120. [DOI: 10.1016/j.postharvbio.2010. 06.001] [DOI:10.1016/j.postharvbio.2010.06.001]
6. Dong J., Guo W., Wang Z., Liu D., Zhao F. (2016). Nondestructive determination of soluble solids content of 'Fuji' Apples produced in different areas and bagged with different materials during ripening. Food Analytical Methods. 9: 1087-1095. [DOI: 10.1007/s12161-015-0278-4] [DOI:10.1007/s12161-015-0278-4]
7. ElMasry G., Sun D.W., Allen P. (2013). Chemical-free assessment and mapping of major constituents in beef using hyperspectral imaging. Journal of Food Engineering. 117: 235-246. [DOI: 10.1016/j.jfoodeng.2013.02.016] [DOI:10.1016/j.jfoodeng.2013.02.016]
8. ElMasry G., Wang N., ElSayed A., Ngadi M. (2007). Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. Journal of Food Engineering. 81: 98-107. [DOI:10.1016/j.jfoodeng.2006.10.016] [DOI:10.1016/j.jfoodeng.2006.10.016]
9. Folch-Fortuny A., Prats-Montalbán J.M., Cubero S., Blasco J., Ferrer A. (2016). VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits. Chemometrics and Intelligent Laboratory Systems. 156: 241-248. [DOI: 10.1016/j.chemolab.2016.05.005] [DOI:10.1016/j.chemolab.2016.05.005]
10. Gómez-Sanchis J., Moltó E., Camps-Valls G., Gómez-Chova L., Aleixos N., Blasco J. (2008). Automatic correction of the effects of the light source on spherical objects. An application to the analysis of hyperspectral images of citrus fruits. Journal of Food Engineering. 85: 191-200. [DOI: 10.1016/j.jfoodeng. 2007.06.036] [DOI:10.1016/j.jfoodeng.2007.06.036]
11. Guo E., Liu M., Zhao J., Chen Q. (2008). Nondestructive detection of sugar content on navel orange with hyperspectral imaging. Transactions of the Chinese Society for Agricultural Machinery. 39: 91-93.
12. Guo W., Zhao F., Dong J. (2016). Nondestructive measurement of soluble solids content of kiwifruits using near-infrared hyperspectral imaging. Food Analytical Methods. 9: 38-47. [DOI: 10.1007/s12161-015-0165-z] [DOI:10.1007/s12161-015-0165-z]
13. Huang M., Wang Q., Zhang M., Zhu Q. (2014). Prediction of color and moisture content for vegetable soybean during drying using hyperspectral imaging technology. Journal of Food Engineering. 128: 24-30. [DOI: 10.1016/j.jfoodeng.2013.12.008] [DOI:10.1016/j.jfoodeng.2013.12.008]
14. Leiva-Valenzuela G.A., Lu R., Aguilera J.M. (2013). Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging. Journal of Food Engineering. 115: 91-98. [DOI: 10.1016/j.jfoodeng.2012.10.001] [DOI:10.1016/j.jfoodeng.2012.10.001]
15. Li J., Rao X., Ying Y. (2011). Detection of common defects on oranges using hyperspectral reflectance imaging. Computers and Electronics in Agriculture. 78: 38-48. [DOI: 10.1016/ j.compag.2011.05.010] [DOI:10.1016/j.compag.2011.05.010]
16. Liu Y., Sun X., Ouyang A. (2010). Nondestructive measurement of soluble solid content of navel orange fruit by visible-NIR spectrometric technique with PLSR and PCA-BPNN. LWT- Food Science and Technology. 43: 602-607. [DOI: 10.1016/ j.lwt.2009.10.008] [DOI:10.1016/j.lwt.2009.10.008]
17. Liu D., Sun D.W., Zeng X.A. (2014). Recent advances in wavelength selection techniques for hyperspectral image processing in the food industry. Food and Bioprocess Technology. 7: 307-323. [DOI: 10.1007/s11947-013-1193-6] [DOI:10.1007/s11947-013-1193-6]
18. Liu M., Zhang L., Guo E. (2007). Hyperspectral laser-induced fluorescence imaging for nondestructive assessing soluble solids content of orange. In: Li D. (Editor) Computer and computing technologies in agriculture. Volume I. Springer, Boston, MA. pp. 51-59. [DOI: 10.1007/978-0-387-77251-6_7] [DOI:10.1007/978-0-387-77251-6_7]
19. Ma T., Li X., Inagaki T., Yang H., Tsuchikawa S. (2018). Noncontact evaluation of soluble solids content in apples by near-infrared hyperspectral imaging. Journal of Food Engineering. 224: 53-61. [DOI: 10.1016/j.jfoodeng.2017.12.028] [DOI:10.1016/j.jfoodeng.2017.12.028]
20. Magwaza L.S., Opara U.L., Terry L.A., Landahl S., Cronje P.J.R., Nieuwoudt H.H., Hanssens A., Saeys W., Nicolaï B.M. (2013). Evaluation of Fourier transform-NIR spectroscopy for integrated external and internal quality assessment of Valencia oranges. Journal of Food Composition and Analysis. 31: 144-154. [DOI: 10.1016/j.jfca.2013.05.007] [DOI:10.1016/j.jfca.2013.05.007]
21. Munera S., Amigo J.M., Aleixos N., Talens P., Cubero S., Blasco J. (2018). Potential of VIS-NIR hyperspectral imaging and chemometric methods to identify similar cultivars of nectarine. Food Control. 86: 1-10. [DOI: 10.1016/j.foodcont.2017.10. 037] [DOI:10.1016/j.foodcont.2017.10.037]
22. Munera S., Besada C., Aleixos N., Talens P., Salvador A., Sun D.W., Cubero S., Blasco J. (2017). Non-destructive assessment of the internal quality of intact persimmon using colour and VIS/NIR hyperspectral imaging. LWT-Food Science and Technology. 77: 241-248. [DOI: 10.1016/j.lwt.2016.11.063] [DOI:10.1016/j.lwt.2016.11.063]
23. Ncama K., Opara U.L., Tesfay S.Z., Fawole O.A., Magwaza L.S. (2017). Application of Vis/NIR spectroscopy for predicting sweetness and flavour parameters of 'Valencia' orange (Citrus sinensis) and 'Star Ruby'grapefruit (Citrus x paradisi Macfad). Journal of Food Engineering. 193: 86-94. [DOI: 10.1016/j. jfoodeng.2016.08.015] [DOI:10.1016/j.jfoodeng.2016.08.015]
24. Orrillo I., Cruz-Tirado J.P., Cardenas A., Oruna M., Carnero A., Barbin D.F., Siche R. (2019). Hyperspectral imaging as a powerful tool for identification of papaya seeds in black pepper. Food Control. 101: 45-52. [DOI: 10.1016/j.foodcont. 2019.02.036] [DOI:10.1016/j.foodcont.2019.02.036]
25. Peng Y., Lu R. (2008). Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biology and Technology. 48: 52-62. [DOI: 10.1016/j.postharvbio.2007.09.019] [DOI:10.1016/j.postharvbio.2007.09.019]
26. Ramful D., Tarnus E., Aruoma O.I., Bourdon E., Bahorun T. (2011). Polyphenol composition, vitamin C content and antioxidant capacity of Mauritian citrus fruit pulps. Food Research International. 44: 2088-2099. [DOI: 10.1016/j. foodres.2011.03.056] [DOI:10.1016/j.foodres.2011.03.056]
27. Rodríguez-Pulido F.J., Hernández-Hierro J.M., Nogales-Bueno J., Gordillo B., González-Miret M.L., Heredia F.J. (2014). A novel method for evaluating flavanols in grape seeds by near infrared hyperspectral imaging. Talanta. 122: 145-150. [DOI: 10.1016/j.talanta.2014.01.044] [DOI:10.1016/j.talanta.2014.01.044] [PMID]
28. Saldaña E., Siche R., Castro W., Huamán R., Quevedo R. (2014). Measurement parameter of color on yacon (Smallanthus sonchifolius) slices using a computer vision system. LWT-Food Science and Technology. 59: 1220-1226. [DOI: 10. 1016/j.lwt.2014.06.037] [DOI:10.1016/j.lwt.2014.06.037]
29. Siche R., Vejarano R., Aredo V., Velasquez L., Saldaña E., Quevedo R. (2016). Evaluation of food quality and safety with hyperspectral imaging (HSI). Food Engineering Reviews. 8: 306-322. [DOI: 10.1007/s12393-015-9137-8] [DOI:10.1007/s12393-015-9137-8]
30. Teerachaichayut S., Ho H.T. (2017). Non-destructive prediction of total soluble solids, titratable acidity and maturity index of limes by near infrared hyperspectral imaging. Postharvest Biology and Technology. 133: 20-25. [DOI: 10.1016/j. postharvbio.2017.07.005] [DOI:10.1016/j.postharvbio.2017.07.005]
31. United States Department of Agriculture (USDA). (2019). Citrus: world markets and trade. USDA. Foreign Agricultural Service. https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf. Accessed 30 July 2019.
32. Vejarano R., Siche R., Tesfaye W. (2017). Evaluation of biological contaminants in foods by hyperspectral imaging: a review. International Journal of Food Properties. 20: 1264-1297. [DOI: 10.1080/10942912.2017.1338729] [DOI:10.1080/10942912.2017.1338729]
33. Velásquez L., Cruz-Tirado J.P., Siche R., Quevedo R. (2017). An application based on the decision tree to classify the marbling of beef by hyperspectral imaging. Meat Science. 133: 43-50. [DOI: 10.1016/j.meatsci.2017.06.002] [DOI:10.1016/j.meatsci.2017.06.002] [PMID]
34. Wang A., Hu D., Xie L. (2014). Comparison of detection modes in terms of the necessity of visible region (VIS) and influence of the peel on soluble solids content (SSC) determination of navel orange using VIS-SWNIR spectroscopy. Journal of Food Engineering. 126: 126-132. [DOI: 10.1016/j.jfoodeng. 2013.11.011] [DOI:10.1016/j.jfoodeng.2013.11.011]
35. Wei X., He J.C., Ye D.P., Jie D.F. (2017). Navel orange maturity classification by multispectral indexes based on hyperspectral diffuse transmittance imaging. Journal of Food Quality. 2017: 1-7. [DOI: 10.1155/2017/1023498] [DOI:10.1155/2017/1023498]
36. Xie C., Chu B., He Y. (2018). Prediction of banana color and firmness using a novel wavelengths selection method of hyperspectral imaging. Food Chemistry. 245: 132-140. [DOI: 10.1016/j.foodchem.2017.10.079] [DOI:10.1016/j.foodchem.2017.10.079] [PMID]
37. Yin S., Bi X., Niu Y., Gu X., Xiao Y. (2017). Hyperspectral classification for identifying decayed oranges infected by fungi. Emirates Journal of Food and Agriculture. 29: 601-609. [DOI: 10.9755/ejfa.2017-05-1074] [DOI:10.9755/ejfa.2017-05-1074]
38. Zhang D., Xu Y., Huang W., Tian X., Xia Y., Xu L., Fan S. (2019). Nondestructive measurement of soluble solids content in apple using near infrared hyperspectral imaging coupled with wavelength selection algorithm. Infrared Physics and Technology. 98: 297-304. [DOI: 10.1016/j.infrared.2019.03.026] [DOI:10.1016/j.infrared.2019.03.026]
39. Zhu H., Chu B., Fan Y., Tao X., Yin W., He Y. (2017). Hyperspectral imaging for predicting the internal quality of kiwifruits based on variable selection algorithms and chemometric models. Scientific Reports. 7: 7845. [DOI: 10.1038/s41598-017-08509-6] [DOI:10.1038/s41598-017-08509-6] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2019 All Rights Reserved | Journal of food quality and hazards control

Designed & Developed by : Yektaweb