Volume 6, Issue 3 (September 2019)                   J. Food Qual. Hazards Control 2019, 6(3): 93-100 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mondragón-Cortez P, Guatemala-Morales G, Arriola-Guevara E. Properties of Some Commercial Honeys Available in Mexican Market: Effect of Overheating on Quality of the Packaged Honey . J. Food Qual. Hazards Control. 2019; 6 (3) :93-100
URL: http://jfqhc.ssu.ac.ir/article-1-576-en.html
Universidad de Guadalajara, Centro Universitario de Ciencias Exactas e Ingenierías, Departamento de Ingeniería Química. Boulevard Marcelino García Barragán 1412, P.C. 44430, Guadalajara, Jalisco, México , arriole@hotmail.com
Abstract:   (44 Views)
Background: Honey is a natural product, but it can be adulterated or heat-treated, both of which damage the properties of the original product. This research was focused on the evaluation of quality parameters of some commercial honeys produced in México. 
Methods: Fifteen samples of commercial honeys available in Mexican market were collected. Some physicochemical parameters were determined, including pH, moisture, water activity, electric conductivity, color, sugar content (fructose and glucose), and hydroxymethylfurfural (HMF) contents.
Results: The results showed that the physicochemical parameters were found within acceptable ranges according to international regulations, with exception of the HMF content in 8 out of 15 honey samples which presented an unacceptable value (>40 mg/kg). The HMF content of the samples ranged from 14.56 to 224.08 mg/kg. Also, all samples of commercial honeys were classified as dark honey according to the L* values determined less than 50 with range from 14.35 to 35.45.
Conclusion: Some commercial honeys from Guadalajara, Mexico had HMF levels above the acceptable limit because of overheating during the packaging process. All evaluated commercial honeys were classified as dark according to the L* values which could be due to formation of browning pigments, in particular HMF, during the overheating. The producers of packaged honey should be encouraged to establish more moderate thermal treatments in order to avoid adverse changes, which affect the quality of the product.

DOI: 10.18502/jfqhc.6.3.1382
Full-Text [PDF 384 kb]   (23 Downloads)    
Type of Study: Original article | Subject: Special
Received: 19/04/11 | Accepted: 19/07/04 | Published: 19/09/03

References
1. Ahmed J., Prabhu S.T., Raghavan G.S.V., Ngadi M. (2007). Physico-chemical, rheological, calorimetric and dielectric behavior of selected Indian honey. Journal of Food Engineering. 79: 1207-1213. [DOI: 10.1016/j.jfoodeng.2006.04.048] [DOI:10.1016/j.jfoodeng.2006.04.048]
2. Anupama D., Bhat K.K., Sapna V.K. (2003). Sensory and physico-chemical properties of commercial samples of honey. Food Research International. 36: 183-191. [DOI: 10.1016/S0963-9969(02)00135-7] [DOI:10.1016/S0963-9969(02)00135-7]
3. Association of Official Analytical Chemists (AOAC). (1999). Plant sugars in honey, internal standard stable carbon isotope ratio method. Method 998.12: C-4. AOAC International. Gaithersburg MD (USA).
4. Baroni M.V., Arrua C., Nores M.L., Fayé P., Díaz M.P., Chiabrando G.A., Wunderlin D.A. (2009). Composition of honey from Córdoba (Argentina): assessment of North/South provenance by chemometrics. Food Chemistry. 114: 727-733. [DOI: 10.1016/j.foodchem.2008.10.018] [DOI:10.1016/j.foodchem.2008.10.018]
5. Bentabol-Manzanares A.Z., Hernández García Z., Rodríguez Galdón B., Rodríguez Rodríguez E., Díaz Romero C. (2014). Physicochemical characteristics of minor monofloral honeys from Tenerife, Spain. LWT-Food Science and Technology. 55: 572-578. [DOI: 10.1016/j.lwt.2013.09.024] [DOI:10.1016/j.lwt.2013.09.024]
6. Bertoncelj J., Doberšek U., Jamnik M., Golob T. (2007). Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chemistry. 105: 822-828. [DOI: 10.1016/j.foodchem.2007.01.060] [DOI:10.1016/j.foodchem.2007.01.060]
7. Bogdanov S., Ruoff K., Oddo L.P. (2004). Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie. 35: S4-S17. [DOI: 10.1051/apido:2004047] [DOI:10.1051/apido:2004047]
8. Boussaid A., Chouaibi M., Rezig L., Hellal R., Donsi F., Ferrari G., Hamdi S. (2018). Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arabian Journal of Chemistry. 11: 265-274. [DOI: 10.1016/ j.arabjc.2014.08.011] [DOI:10.1016/j.arabjc.2014.08.011]
9. Codex Alimentarius. (2001). Standards for honey. Codex standard 12-1981 Rev. 2.
10. Czipa N., Kovács B. (2014). Electrical conductivity of Hungarian honeys. Journal Food Physics. 27: 13-20.
11. Dobre I., Georgescu L.A., Alexe P., Escuredo O., Seijo M.C. (2012). Rheological behavior of different honey types from Romania. Food Research International. 49: 126-132. [DOI: 10.1016/j.foodres.2012.08.009] [DOI:10.1016/j.foodres.2012.08.009]
12. Escriche I., Visquert M., Carot J.M., Doménech E., Fito P. (2008). Effect of honey thermal conditions on hydroxymethylfurfural content prior to pasteurization. Food Science and Technology International. 14: 29-35. [DOI: 10.1177/1082013208094580] [DOI:10.1177/1082013208094580]
13. European :union:. (2002). European :union: Directive, Council Directive 2001/110/EC relating to Honey.
14. Fallico B., Zappala M., Arena E., Verzera A. (2004). Effects of conditioning on HMF content in unifloral honeys. Food Chemistry. 85: 305-313. [DOI: 10.1016/j.foodchem.2003.07.010] [DOI:10.1016/j.foodchem.2003.07.010]
15. Gleiter R.A., Horn H., Isengard H.D. (2006). Influence of type and state of crystallization on the water activity of honey. Food Chemistry. 96: 441-445. [DOI: 10.1016/j.foodchem.2005.03. 051] [DOI:10.1016/j.foodchem.2005.03.051]
16. González-Miret M.L., Terrab A., Hernanz D., Fernández-Recamales M.A., Heredia F.J. (2005). Multivariate correlation between color and mineral composition of honeys and by their botanical origin. Journal of the Agricultural and Food Chemistry. 53: 2574-2580. [DOI: 10.1021/jf048207p] [DOI:10.1021/jf048207p] [PMID]
17. Haouam L., Tahar A., Dailly H., Lahrichi A., Chaqroune A., Abdennour C. (2016). Physicochemical properties and major elements contents of Algerian honeys from semi-arid regions. Emirates Journal of Food and Agriculture. 28: 107-115. [DOI: 10.9755/ejfa.2015-04-064] [DOI:10.9755/ejfa.2015-04-064]
18. Khalil M.I., Sulaiman S.A., Gan S.H. (2010). High 5-hydroxymethylfurfural concentrations are found in Malaysian honey samples stored for more than one year. Food and Chemical Toxicology. 48: 2388-2392. [DOI: 10.1016/j.fct. 2010.05.076] [DOI:10.1016/j.fct.2010.05.076] [PMID]
19. Khan M.N., Qaiser M., Raza S.M., Rehman M. (2006). Physicochemical properties and pollen spectrum of imported and local samples of blossom honey from the Pakistani market. International Journal of Food Science and Technology. 41: 775-781. [DOI: 10.1111/j.1365-2621.2005.01079.x] [DOI:10.1111/j.1365-2621.2005.01079.x]
20. Lazaridou A., Biliaderis C.G., Bacandritsos N., Sabatini A.G. (2004). Composition, thermal and rheological behaviour of selected Greek honeys. Journal of Food Engineering. 64: 9-21. [DOI: 10.1016/j.jfoodeng.2003.09.007] [DOI:10.1016/j.jfoodeng.2003.09.007]
21. Manikis I., Thrasivoulou A. (2001). The relation of physicochemical characteristics of honey and the crystallization sensitive parameters. Apiacta. 36: 106-112.
22. Moguel-Ordoñez Y., Echatarreta-González C., Mora-Escobedo R. (2005). Physicochemical quality of honey from honeybees Apis mellifera produced in the State of Yucatan during different stages of the production process and blossoms. Técnica Pecuaria en México. 43: 323-334.
23. Mondragón Cortez P., Ulloa J.A., Rosas Ulloa P., Rodríguez R., Reséndiz Vázquez J.A. (2013). Physicochemical characterization of honey from the West region of México. CyTA-Journal of Food. 11: 7-13. [DOI: 10.1080/19476337.2012.673175] [DOI:10.1080/19476337.2012.673175]
24. Onur I., Misra N.N., Barba F.J., Putnik P., Lorenzo J.M., Gokmen V., Alpas H. (2018). Effects of ultrasound and high pressure on physicochemical properties and HMF formation in Turkish honey types. Journal of Food Engineering. 219: 129-136. [DOI: 10.1016/j.jfoodeng.2017.09.019] [DOI:10.1016/j.jfoodeng.2017.09.019]
25. Ouchemoukh S., Schweitzer P., Bachir Bey M., Djoudad-Kadji H., Louaileche H. (2010). HPLC sugar profiles of Algerian honeys. Food Chemistry. 121: 561-568. [DOI: 10.1016/j. foodchem.2009.12.047] [DOI:10.1016/j.foodchem.2009.12.047]
26. Pasias I.N., Kiriakou I.K., Proestos C. (2017). HMF and diastase activity in honeys: a fully validated approach and a chemometric analysis for identification of honey freshness and adulteration. Food Chemistry. 229: 425-431. [DOI: 10.1016/j. foodchem.2017.02.084] [DOI:10.1016/j.foodchem.2017.02.084] [PMID]
27. Schramm D.D., Karim M., Schrader H.R., Holt R.R., Cardetti M., Keen C.L. (2003). Honey with high levels of antioxidants can provide protection to healthy human subjects. Journal of Agricultural and Food Chemistry. 51: 1732-1735. [DOI: 10.1021/jf025928k] [DOI:10.1021/jf025928k] [PMID]
28. Tosi E., Ciappini M., Ré E., Lucero H. (2002). Honey thermal treatment effect on hydroxymethylfurfural content. Food Chemistry. 77: 71-74. [DOI: /10.1016/S0308-8146(01)00325-9] [DOI:10.1016/S0308-8146(01)00325-9]
29. Turhan I., Tetik N., Karhan M., Gurel F., Reyhan Tavukcuoglu H. (2008). Quality of honeys influenced by thermal treatment. LWT-Food Science and Technology. 41: 1396-1399. [DOI: 10.1016/j.lwt.2007.09.008] [DOI:10.1016/j.lwt.2007.09.008]
30. Turkmen N., Sari F., Poyrazoglu E.S., Velioglu Y.S. (2006). Effects of prolonged heating on antioxidant activity and colour of honey. Food Chemistry. 95: 653-657. [10.1016/j.foodchem.2005. 02.004] [DOI:10.1016/j.foodchem.2005.02.004]
31. Viuda-Martos M., Ruiz-Navajas Y., Zaldivar-Cruz J.M., Kuri V., Fernández-López J., Carbonell-Barrachina A.A., Pérez-Álvarez J.A. (2010). Aroma profile and physico-chemical properties of artisanal honey from Tabasco, Mexico. International Journal of Food Science and Technology. 45: 1111-1118. [DOI: 10.1111/j.1365-2621.2010.02243.x] [DOI:10.1111/j.1365-2621.2010.02243.x]
32. Wang J., Kliks M.M., Jun S., Jackson M., Li Q.X. (2010). Rapid analysis of glucose, fructose, sucrose, and maltose in honeys from different geographic regions using fourier transform infrared spectroscopy and multivariate analysis. Journal of Food Science. 75: C208-C214. [DOI: 10.1111/j.1750-3841.2009. 01504.x] [DOI:10.1111/j.1750-3841.2009.01504.x] [PMID]
33. White Jr J.W. (1978). Honey. Advances in Food Research. 24: 287-374. [DOI: 10.1016/S0065-2628(08)60160-3] [DOI:10.1016/S0065-2628(08)60160-3]
34. Zamora M.C., Chirife J. (2006). Determination of water activity change due to crystallization in honeys from Argentina. Food Control. 17: 59-64. [DOI: 10.1016/j.foodcont.2004.09.003] [DOI:10.1016/j.foodcont.2004.09.003]
35. Zappala M., Fallico B., Arena E., Verzera A. (2005). Methods for the determination of HMF in honey: a comparison. Food Control. 16: 273-277. [DOI: 10.1016/j.foodcont.2004.03.006] [DOI:10.1016/j.foodcont.2004.03.006]
36. Zhao H., Cheng N., Zhang Y., Sun Z., Zhou W., Wang Y., Cao W. (2018). The effects of different thermal treatments on amino acid contents and chemometric-based identification of overheated honey. LWT-Food Science and Technology. 96: 133-139. [DOI: /10.1016/j.lwt.2018.05.004] [DOI:10.1016/j.lwt.2018.05.004]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2019 All Rights Reserved | Journal of food quality and hazards control

Designed & Developed by : Yektaweb