Volume 6, Issue 3 (September 2019)                   J. Food Qual. Hazards Control 2019, 6(3): 121-127 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shoaei F, Heshmati A, Khorshidi M. The Risk Assessment of Sulphite Intake through Dried Fruit Consumption in Hamadan, Iran. J. Food Qual. Hazards Control. 2019; 6 (3) :121-127
URL: http://jfqhc.ssu.ac.ir/article-1-580-en.html
Department of Nutrition and Food Safety, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran , a.heshmati@umsha.ac.ir
Abstract:   (224 Views)
Background: Dried fruit is one of the main sources of sulphur dioxide (SO2) exposure. The major goal of the current study was to determine SO2 concentration in some widely consumed dried fruits in Hamadan, Iran. In addition, an estimate of sulphite intake was made through the aforementioned dried fruit.
Methods: Totally, 126 dried fruit samples were randomly collected from local market in Hamadan, Iran. The sulfur dioxide, moisture contents, and pH of dried fruit samples were measured by iodometric titration, gravimetric method, and pH meter, respectively. Data analysis was performed using SPSS statistical software.
Results: The mean sulphite residue in raisin, sultana, half-dried apricot, whole-dried apricot, dried prune, peach fruit leather, and apricot fruit leather was 236.49±231.34, 485.84±217.55, 1204.00±750.21, 2257.78±1406.63, 597.32±401.82, 84.74±109.22, and 38.28±32.40 mg/kg, respectively. Eleven out of 18 (61.11%) whole-dried apricot samples and 3 out of 18 (16.66%) half-dried apricot samples had unacceptable level of sulphite. The moisture contents and pH of all dried fruit were at an acceptable level. The amount of daily sulphite exposure through the consumption of dried fruits for preschool children, adult females, and adult males were 0.53, 0.35, and 0.30 mg/kg body weight/day, respectively.
Conclusion: As the intake of sulphite through the dried fruit in Iran was lower than acceptable daily intake, it appears that the content of this food preservative in dried fruits consumed in Iran has no serious risk for Iranian consumers. However, consumers should be advised to avoid excessive consumption of dried fruits, especially whole-dried apricot.

DOI: 10.18502/jfqhc.6.3.1386
Full-Text [PDF 384 kb]   (110 Downloads)    
Type of Study: Original article | Subject: Special
Received: 19/01/16 | Accepted: 19/04/30 | Published: 19/09/03

References
1. Arslan Y., Broekaert J.A.C., Kula I. (2018). Determination of sulfur in grape and apricot samples using high-resolution continuum source electrothermal molecular absorption spectrometry. Analytical Sciences. 34: 831-836. [DOI: 10.2116/analsci. 17P608] [DOI:10.2116/analsci.17P608] [PMID]
2. Association of Official Analytical Chemists (AOAC). (2000). Official methods of analysis. Method 934.06. AOAC International, Maryland, USA.
3. Bemrah N., Leblanc J.C., Volatier J.L. (2008). Assessment of dietary exposure in the French population to 13 selected food colors, preservatives, antioxidants, stabilizers, emulsifiers and sweeteners. Food Additives and Contaminants: Part B. 1: 2-14. [DOI: 10.1080/19393210802236943] [DOI:10.1080/19393210802236943] [PMID]
4. Cantín C.M., Minas I.S., Goulas V., Jiménez M., Manganaris G.A., Michailides T.J., Crisosto C.H. (2012). Sulfur dioxide fumigation alone or in combination with CO2-enriched atmosphere extends the market life of highbush blueberry fruit. Postharvest Biology and Technology. 67: 84-91. [DOI: 10.1016/j.postharvbio.2011.12.006] [DOI:10.1016/j.postharvbio.2011.12.006]
5. Codex Alimentarius. (1995). Codex general standard for food additives. Codex standard 192-1995.
6. Cressey P., Jones S. (2009). Levels of preservatives (sulfite, sorbate and benzoate) in New Zealand foods and estimated dietary exposure. Food Additives and Contaminants: Part A. 26: 604-613. [DOI: 10.1080/02652030802669188] [DOI:10.1080/02652030802669188] [PMID]
7. Diamante L.M., Bai X., Busch J. (2014). Fruit leathers: method of preparation and effect of different conditions on qualities. International Journal of Food Science. [DOI: 10.1155/2014/ 139890] [DOI:10.1155/2014/139890] [PMID] [PMCID]
8. European Food Safety Authority (EFSA). (2016). Panel on food additives and nutrient sources added to food (ANS). Scientific opinion on the re-evaluation of sulfur dioxide (E 220), sodium sulfite (E 221), sodium bisulfite (E 222), sodium metabisulfite (E 223), potassium metabisulfite (E 224), calcium sulfite (E 226), calcium bisulfite (E 227), and potassium bisulfite (E 228) as food additives. EFSA Journal. 14: 4438. [DOI: 10.2903/j.efsa.2016.4438] [DOI:10.2903/j.efsa.2016.4438]
9. Food Standards Australia New Zealand (FSANZ). (2005). The 21st Australian total diet study. A total diet study of sulphites, benzoates and sorbates. FSANZ Australia.
10. Grigoryan K.M., Hakobyan L.L. (2015). Effect of water activity, pH and temperature on contamination level of dried vine fruite by filamentous fungi during storage. Chemistry and Biology. 3: 23-28.
11. Guerrero R.F., Cantos-Villar E. (2015). Demonstrating the efficiency of sulphur dioxide replacements in wine: a parameter review. Trends in Food Science and Technology. 42: 27-43. [DOI: 10.1016/j.tifs.2014.11.004] [DOI:10.1016/j.tifs.2014.11.004]
12. Guido L.F. (2016). Sulfites in beer: reviewing regulation, analysis and role. Scientia Agricola. 73: 189-197. [DOI: 10.1590/0103-9016-2015-0290] [DOI:10.1590/0103-9016-2015-0290]
13. Heshmati A., Mozaffari Nejad A.S. (2015). Ochratoxin A in dried grapes in Hamadan province, Iran. Food Additives and Contaminants: Part B. 8: 255-259. [DOI: 10.1080/19393210. 2015.1074945] [DOI:10.1080/19393210.2015.1074945] [PMID]
14. Heshmati A., Zohrevand T., Khaneghah A.M., Mozaffari Nejad A.S., Sant'Ana A.S. (2017). Co-occurrence of aflatoxins and ochratoxin A in dried fruits in Iran: dietary exposure risk assessment. Food and Chemical Toxicology. 106: 202-208. [DOI: 10.1016/j.fct.2017.05.046] [DOI:10.1016/j.fct.2017.05.046] [PMID]
15. Institute of Standards and Industrial Research of Iran (ISIRI). (2012). Seedless raisin-specification and test methods. National Standard No. 17. 7th revision. URL: http://standard.isiri.gov. ir/StandardView.aspx?Id=34199. Accessed 30 April 2012.
16. Institute of Standards and Industrial Research of Iran (ISIRI). (2014). Gheisi (Whole dried apricot)-specifications and test methods. National Standard No. 13. 4th revision. URL: http://standard.isiri.gov.ir/StandardView.aspx?Id=41629. Accessed 7 June 2014.
17. Institute of Standards and Industrial Research of Iran (ISIRI). (2015). Dried apricots - specification and test methods. National Standard No. 11. 5th revision. URL: http://standard.isiri. gov.ir/StandardView.aspx?Id=40024. Accessed 22 November 2015.
18. Institute of Standards and Industrial Research of Iran (ISIRI). (2017). Dried fruits- determination of sulfur dioxide. National Standard No. 569. URL: http://standard.isiri.gov.ir/ StandardView.aspx?Id=47184. Accessed 25 December 2017.
19. Institute of Standards and Industrial Research of Iran (ISIRI). (2018). Specification and methods of test for fruit snack (fruit paste). National Standard No. 3308. 2nd revision. URL: http://standard.isiri.gov.ir/StandardView.aspx?Id=50065. Accessed 25 August 2018.
20. Leclercq C., Molinaro M.G., Piccinelli R., Baldini M., Arcella D., Stacchini P. (2000). Dietary intake exposure to sulphites in Italy-analytical determination of sulphite-containing foods and their combination into standard meals for adults and children. Food Additives and Contaminants. 17: 979-989. [DOI: 10.1080/02652030010014402] [DOI:10.1080/02652030010014402] [PMID]
21. Lien K.W., Hsieh D.P.H., Huang H.Y., Wu C.H., Ni S.P., Ling M.P. (2016). Food safety risk assessment for estimating dietary intake of sulfites in the Taiwanese population. Toxicology Reports. 3: 544-551. [DOI: 10.1016/j.toxrep.2016.06.003] [DOI:10.1016/j.toxrep.2016.06.003] [PMID] [PMCID]
22. Lou T., Huang W., Wu X., Wang M., Zhou L., Lu B., Zheng L., Hu Y. (2017). Monitoring, exposure and risk assessment of sulfur dioxide residues in fresh or dried fruits and vegetables in China. Food Additives and Contaminants: Part A. 34: 918-927. [DOI: 10.1080/19440049.2017.1313458] [DOI:10.1080/19440049.2017.1313458] [PMID]
23. Machado R.M.D., Toledo M.C.F., Vicente E. (2009). Sulfite content in some Brazilian wines: analytical determination and estimate of dietary exposure. European Food Research and Technology. 229: 383-389. [DOI: 10.1007/s00217-009-1071-7] [DOI:10.1007/s00217-009-1071-7]
24. Meng Z., Qin G., Zhang B. (2005). DNA damage in mice treated with sulfur dioxide by inhalation. Environmental and Molecular Mutagenesis. 46: 150-155. [DOI: 10.1002/em.20142] [DOI:10.1002/em.20142] [PMID]
25. Mischek D., Krapfenbauer-Cermak C. (2012). Exposure assessment of food preservatives (sulphites, benzoic and sorbic acid) in Austria. Food Additives and Contaminants: Part A. 29: 371-382. [DOI: 10.1080/19440049.2011.643415] [DOI:10.1080/19440049.2011.643415] [PMID]
26. Ozturk K., Konak R., Ozturk B., Atay S., Celik B., Yanar M., Demirtas M.N., Ercisli S. (2011). Effects of sulphurization duration of doses and cold storage on SO2 content of dried apricot fruits of cv. 'Hacihaliloglu'. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 39: 237-241. [DOI: 10.15835/ nbha3926235] [DOI:10.15835/nbha3926235]
27. Silva M.M., Lidon F. (2016). Food preservatives-An overview on applications and side effects. Emirates Journal of Food and Agriculture. 28: 366-373. [DOI: 10.9755/ejfa.2016-04-351] [DOI:10.9755/ejfa.2016-04-351]
28. Soubra L., Sarkis D., Hilan C., Verger P. (2007). Dietary exposure of children and teenagers to benzoates, sulphites, butylhydroxyanisol (BHA) and butylhydroxytoluen (BHT) in Beirut (Lebanon). Regulatory Toxicology and Pharmacology. 47: 68-77. [DOI: 10.1016/j.yrtph.2006.07.005] [DOI:10.1016/j.yrtph.2006.07.005] [PMID]
29. Stražanac D., Gross-Bošković A., Hengl B., Bašić S., Sokolić D. (2019). Use of sulphur dioxide and sulphites (E 220-E 228) in canning of crab meat. Meso: prvi hrvatski časopis o mesu. 21: 269-278. [DOI: 10.31727/m.21.3.5] [DOI:10.31727/m.21.3.5]
30. Suh H.J., Cho Y.H., Chung M.S., Kim B.H. (2007). Preliminary data on sulphite intake from the Korean diet. Journal of Food Composition and Analysis. 20: 212-219. [DOI: 10.1016/j.jfca. 2006.04.012] [DOI:10.1016/j.jfca.2006.04.012]
31. Türkyılmaz M., Tağı Ş., Özkan M. (2013). Changes in chemical and microbial qualities of dried apricots containing sulphur dioxide at different levels during storage. Food and Bioprocess Technology. 6: 1526-1538. [DOI: 10.1007/s11947-012-0884-8] [DOI:10.1007/s11947-012-0884-8]
32. Vally H., Misso N.L.A., Madan V. (2009). Clinical effects of sulphite additives. Clinical and Experimental Allergy. 39: 1643-1651. [DOI: 10.1111/j.1365-2222.2009.03362.x] [DOI:10.1111/j.1365-2222.2009.03362.x] [PMID]
33. Vandevijvere S., Temme E., Andjelkovic M., De Wil M., Vinkx C., Goeyens L., Van Loco J. (2010). Estimate of intake of sulfites in the Belgian adult population. Food Additives and Contaminants: Part A. 27: 1072-1083. [DOI: 10.1080/ 19440041003754506] [DOI:10.1080/19440041003754506] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2019 All Rights Reserved | Journal of food quality and hazards control

Designed & Developed by : Yektaweb