Volume 6, Issue 3 (September 2019)                   J. Food Qual. Hazards Control 2019, 6(3): 128-132 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Stratev D, Pavlov A, Bangieva D, Stoyanchev T. Fluoroquinolone Residues in Fish Collected from Farms and Retail Stores in Stara Zagora Region, Bulgaria. J. Food Qual. Hazards Control 2019; 6 (3) :128-132
URL: http://jfqhc.ssu.ac.ir/article-1-581-en.html
Department of Food Hygiene and Control, Veterinary Legislation and Management, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria , deyan.stratev@trakia-uni.bg
Abstract:   (2758 Views)
Background: Fluoroquinolones are among various antibiotic groups used in livestock husbandry. The aim of this screening study was to evaluate the presence of fluoroquinolone residues in fish samples of Stara Zagora region, Bulgaria.
Methods: A total of 69 samples from freshwater, marine, and anadromous fish were collected randomly from fish farms and retail stores in Stara Zagora region, Bulgaria. Fluoroquinolone residues were determined using Enzyme-Linked Immunosorbent Assay method. Data were statistically processed using STATISTICA 10.0 software.
Results: Fluoroquinolones were detected in 44.3% of freshwater and 42.9% of marine fish samples, with no significant difference (p>0.05). Their concentrations varied from 1.03 to 271.73 μg/kg for common carp, 1.43 to 12.63 μg/kg for rainbow trout, 1.17 to 1.94 μg/kg for silver carp, 1.00 to 1.82 μg/kg for rudd and 1.27 to 2.15 μg/kg for striped catfish. Among marine fish, fluoroquinolone positive samples were found in European sprat (1.68 μg/kg), Longtail southern cod (1.30 μg/kg), and European hake (1.83 μg/kg).
Conclusion: High levels of fluoroquinolones were found in some fish samples of Stara Zagora region, Bulgaria. Regular monitoring of antibiotic residues is too necessary in fish distributed in this region.

DOI: 10.18502/jfqhc.6.3.1387
Full-Text [PDF 398 kb]   (977 Downloads)    
Type of Study: Short communication | Subject: Special
Received: 19/02/06 | Accepted: 19/04/13 | Published: 19/09/03

References
1. Barani A., Fallah A.A. (2015). Occurrence of tetracyclines, sulfonamides, fluoroquinolones and florfenicol in farmed rainbow trout in Iran. Food and Agricultural Immunology. 26: 420-429. [DOI: 10.1080/09540105.2014.950199] [DOI:10.1080/09540105.2014.950199]
2. Barreto F., Ribeiro C.B.D., Hoff R.B., Dalla Costa T. (2017). Development and validation of a high-throughput method for determination of nine fluoroquinolones residues in muscle of different animal species by liquid chromatography coupled to tandem mass spectrometry with low temperature clean up. Journal of Chromatography A. 1521: 131-139. [DOI: 10.1016 /j.chroma.2017.09.036] [DOI:10.1016/j.chroma.2017.09.036] [PMID]
3. Cabello F.C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental Microbiology. 8: 1137-1144. [DOI: 10.1111/j.1462-2920.2006.01054.x] [DOI:10.1111/j.1462-2920.2006.01054.x] [PMID]
4. Canada-Canada F., de la Pena A.M., Espinosa-Mansilla A. (2009). Analysis of antibiotics in fish samples. Analytical and Bioanalytical Chemistry. 395: 987-1008. [DOI: 10.1007/s00216-009-2872-z] [DOI:10.1007/s00216-009-2872-z] [PMID]
5. Commission Regulation. (2010). Pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Official Journal of the European :union:. L15. No. 37/2010.
6. Conti G.O., Copat C., Wang Z., D'Agati P., Cristaldi A., Ferrante M. (2015). Determination of illegal antimicrobials in aquaculture feed and fish: an ELISA study. Food Control. 50: 937-941. [DOI: 10.1016/j.foodcont.2014.10.050] [DOI:10.1016/j.foodcont.2014.10.050]
7. Fortt A.Z., Cabello F.C., Buschmann A.R. (2007). Residues of tetracycline and quinolones in wild fish living around a salmon aquaculture center in Chile. Revista Chilena de Infectologia: Organo Oficial de la Sociedad Chilena de Infectologia. 24: 14-18. [DOI: /S0716-10182007000100002]
8. Guidi L.R., Santos F.A., Ribeiro A.C.S.R., Fernandes C., Silva L.H.M., Gloria M.B.A. (2018). Quinolones and tetracyclines in aquaculture fish by a simple and rapid LC-MS/MS method. Food Chemistry. 245: 1232-1238. [DOI: 10.1016/j.foodchem. 2017.11.094] [DOI:10.1016/j.foodchem.2017.11.094] [PMID]
9. He X., Deng M., Wang Q., Yang Y., Yang Y., Nie X. (2016). Residues and health risk assessment of quinolones and sulfonamides in cultured fish from Pearl River Delta, China. Aquaculture. 458: 38-46. [DOI: 10.1016/j.aquaculture.2016.02.006] [DOI:10.1016/j.aquaculture.2016.02.006]
10. Mahmoudi R., Gajarbeygi P., Norian R., Farhoodi K. (2014). Chloramphenicol, sulfonamide and tetracycline residues in cultured rainbow trout meat (Oncorhynchus mykiss). Bulgarian Journal of Veterinary Medicine. 17: 147-152.
11. Pham D.K., Chu J., Do N.T., Brose F., Degand G., Delahaut P., De Pauw E., Douny C., Van Nguyen K., Vu T.D., Scippo M.L., Wertheim H.F.L. (2015). Monitoring antibiotic use and residue in freshwater aquaculture for domestic use in Vietnam. EcoHealth. 12: 480-489. [DOI: 10.1007/s10393-014-1006-z] [DOI:10.1007/s10393-014-1006-z] [PMID] [PMCID]
12. Rhodes G., Huys G., Swings J., McGann P., Hiney M., Smith P., Pickup R.W. (2000). Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: implication of Tn1721 in dissemination of the tetracycline resistance determinant Tet A. Applied and Environmental Microbiology. 66: 3883-3890. [DOI: 10.1128/AEM.66. 9.3883-3890.2000] [DOI:10.1128/AEM.66.9.3883-3890.2000] [PMID] [PMCID]
13. Santos L., Ramos F. (2018). Antimicrobial resistance in aquaculture: current knowledge and alternatives to tackle the problem. International Journal of Antimicrobial Agents. 52: 135-143. [DOI: 10.1016/j.ijantimicag.2018.03.010] [DOI:10.1016/j.ijantimicag.2018.03.010] [PMID]
14. Tittlemier S.A., Van de Riet J., Burns G., Potter R., Murphy C., Rourke W., Pearce H., Dufresne G. (2007). Analysis of veterinary drug residues in fish and shrimp composites collected during the Canadian total diet study, 1993-2004. Food Additives and Contaminants. 24: 14-20. [DOI: 10.1080/ 02652030600932937] [DOI:10.1080/02652030600932937] [PMID]
15. Wagil M., Kumirska J., Stolte S., Puckowski A., Maszkowska J., Stepnowski P., Białk-Bielińska A. (2014). Development of sensitive and reliable LC-MS/MS methods for the determination of three fluoroquinolones in water and fish tissue samples and preliminary environmental risk assessment of their presence in two rivers in northern Poland. Science of the Total Environment. 493: 1006-1013. [DOI: 10.1016/j.scitotenv. 2014.06.082] [DOI:10.1016/j.scitotenv.2014.06.082] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb