Volume 7, Issue 1 (March 2020)                   J. Food Qual. Hazards Control 2020, 7(1): 4-10 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ali A, Parisi A, Conversano M, Iannacci A, D’Emilio F, Mercurio V et al . Food-Borne Bacteria Associated with Seafoods: A Brief Review. J. Food Qual. Hazards Control. 2020; 7 (1) :4-10
URL: http://jfqhc.ssu.ac.ir/article-1-606-en.html
Department of Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25 71122, Foggia, Italy , giovanni.normanno@unifg.it
Abstract:   (1033 Views)
Consumption of contaminated seafoods is a major cause of death and hospitalization particularly in poor and developing countries. As with other food types, seafoods are also not free of food-borne pathogens and several risk factors are associated with its consumption. Regarding seafoods, there are regulatory hygienic alerts in importing countries. This paper briefly reviews the occurrence of seafood-borne diseases and describes the most important bacterial causes of these infections. Also, major bacterial threats, the route of infection, and food safety concerns associated with seafoods consumption are explained. Several bacterial pathogens, like Vibrio spp., Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, Clostridium botulinum, Shigella spp., and Aeromonas spp. are considered as microbiological hazards for seafoods. These bacteria can contaminate seafood products anytime from farm to table. Some effective methods should be adopted for control and prevention of bacterial hazards in fish industry. Maintaining the microbiological water quality of domestic capture, post-harvest care, proper hygiene, etc. can minimize the bacterial hazards. Food-borne intoxications can be controlled by the proper refrigeration of seafoods and the continuous monitoring of the chill chain during the entire production process right up to consumption. Other ways to prevent food-borne outbreaks due to consumptions of seafoods are training of the consumers about correct handling of food, proper preparation, and storage of seafoods.

DOI: 10.18502/jfqhc.7.1.2446
Full-Text [PDF 360 kb]   (300 Downloads)    
Type of Study: Review article | Subject: Special
Received: 19/04/17 | Accepted: 19/10/19 | Published: 20/03/06

1. Abdollahzadeh E., Ojagh S.M., Hosseini H., Irajian G., Ghaemi E.A. (2016). Prevalence and molecular characterization of Listeria spp. and Listeria monocytogenes isolated from fish, shrimp, and cooked ready-to-eat (RTE) aquatic products in Iran. LWT- Food Science and Technology. 73: 205-211. [DOI: 10.1016/j.lwt.2016.06.020] [DOI:10.1016/j.lwt.2016.06.020]
2. Aberoum A., Jooyandeh H. (2010). A review on occurrence and characterization of the Aeromonas species from marine fishes. World Journal of Fish and Marine Sciences. 2: 519-523.
3. Albuquerque W.F., Macrae A., Sousa O.V., Vieira G.H.F., Vieira R.H.S.F. (2007). Multiple drug resistant Staphylococcus aureus strains isolated from a fish market and from fish handlers. Brazilian Journal of Microbiology. 38: 131-134. [DOI: 10.1590/S1517-83822007000100027] [DOI:10.1590/S1517-83822007000100027]
4. Amagliani G., Brandi G., Schiavano G.F. (2012). Incidence and role of Salmonella in seafood safety. Food Research International. 45: 780-788. [DOI: 10.1016/j.foodres.2011.06. 022] [DOI:10.1016/j.foodres.2011.06.022]
5. Argudin M.A., Mendoza M.C., Rodicio M.R. (2010). Food poisoning and Staphylococcus aureus enterotoxins. Toxins. 2: 1751-1773. [DOI: 10.3390/toxins2071751] [DOI:10.3390/toxins2071751] [PMID] [PMCID]
6. Barrett K.A., Nakao J.H., Taylor E.V., Eggers C., Gould L.H. (2017). Fish-associated foodborne disease outbreaks: United States, 1998-2015. Foodborne Pathogens and Disease. 14: 537-543. [DOI: 10.1089/fpd.2017.2286] [DOI:10.1089/fpd.2017.2286] [PMID]
7. Brett M.S.Y., Short P., McLauchlin J. (1998). A small outbreak of listeriosis associated with smoked mussels. International Journal of Food Microbiology. 43: 223-229. [DOI: 10.1016/s0168-1605(98)00116-0] [DOI:10.1016/S0168-1605(98)00116-0]
8. Butt A.A., Aldridge K.E., Sanders C.V. (2004). Infections related to the ingestion of seafood Part I: viral and bacterial infections. The Lancet Infectious Diseases. 4: 201-212. [DOI: 10.1016/s1473-3099(04)00969-7] [DOI:10.1016/S1473-3099(04)00969-7]
9. Cartwright E.J., Jackson K.A., Johnson S.D., Graves L.M., Silk B.J., Mahon B.E. (2013). Listeriosis outbreaks and associated food vehicles, United States, 1998-2008. Emerging Infectious Diseases. 19: 1-9. [DOI: 10.3201/eid1901.120393] [DOI:10.3201/eid1901.120393] [PMID] [PMCID]
10. David O.M., Wandili S., Kakai R., Waindi E.N. (2009). Isolation of Salmonella and Shigella from fish harvested from the Winam Gulf of Lake Victoria, Kenya. The Journal of Infection in Develping Countries. 3: 99-104. [DOI: 10.3855/jidc.56] [DOI:10.3855/jidc.56] [PMID]
11. Elbashir S., Parveen S., Schwarz J., Rippen T., Jahncke M., DePaola A. (2018). Seafood pathogens and information on antimicrobial resistance: a review. Food Microbiology. 70: 85-93. [DOI: 10.1016/j.fm.2017.09.011] [DOI:10.1016/j.fm.2017.09.011] [PMID]
12. Emmett R., Akkersdyk S., Yeatman H., Meyer B.J. (2013). Expanding awareness of docosahexaenoic acid during pregnancy. Nutrients. 5: 1098-1109. [DOI: 10.3390/nu 5041098] [DOI:10.3390/nu5041098] [PMID] [PMCID]
13. Fisher E.L., Otto M., Cheung G.Y.C. (2018). Basis of virulence in enterotoxin-mediated staphylococcal food poisoning. Frontiers in Microbiology. 9: 436. [DOI: 10.3389/fmicb. 2018.00436] [DOI:10.3389/fmicb.2018.00436] [PMID] [PMCID]
14. Gambarin P., Magnabosco C., Losio M.N., Pavoni E., Gattuso A., Arcangeli G., Favretti M. (2012). Listeria monocytogenes in ready-to-eat seafood and potential hazards for the consumers. International Journal of Microbiology. [DOI: 10.1155/2012/ 497635] [DOI:10.1155/2012/497635] [PMID] [PMCID]
15. Gauthier D.T. (2015). Bacterial zoonoses of fishes: a review and appraisal of evidence for linkages between fish and human infections. The Veterinary Journal. 203: 27-35. [DOI: 10.1016/j.tvjl.2014.10.028] [DOI:10.1016/j.tvjl.2014.10.028] [PMID]
16. Ghanbari M., Jami M., Domig K.J., Kneifel W. (2013). Seafood biopreservation by lactic acid bacteria-a review. LWT-Food Science and Technology. 54: 315-324. [DOI:10.1016/j.lwt. 2013.05.039] [DOI:10.1016/j.lwt.2013.05.039]
17. Giltner C.L., Nguyen Y., Burrows L.L. (2012). Type IV pilin proteins: versatile molecular modules. Microbiology and Molecular Biology Reviews. 76: 740-772. [DOI: 10.1128/ MMBR.00035-12] [DOI:10.1128/MMBR.00035-12] [PMID] [PMCID]
18. Gudmundsdottir S., Gudbjornsdottir B., Einarsson H., Kristinsson K.G., Kristjansson M. (2006). Contamination of cooked peeled shrimp (Pandalus borealis) by Listeria monocytogenes during processing at two processing plants. Journal of Food Protection. 69: 1304-1311. [DOI: 10.4315/0362-028X-69.6.1304] [DOI:10.4315/0362-028X-69.6.1304] [PMID]
19. Guergue-Diaz de Cerio O., Barrutia-Borque A., Gardeazabal-Garcia J. (2016). Scombroid poisoning: a practical approach. Actas Ifiliograficas. 107: 567-571. [DOI: 10.1016/j.ad.2016. 02.010] [DOI:10.1016/j.adengl.2016.06.003]
20. Haenen O.L., Evans J.J., Berthe F. (2013). Bacterial infections from aquatic species: potential for and prevention of contact zoonoses. Review Science and Technology. 32: 497-507. [DOI: 10.20506/rst.32.2.2245] [DOI:10.20506/rst.32.2.2245] [PMID]
21. Hanninen M.L., Oivanen P., Hirvela-Koski V. (1997). Aeromonas species in fish, fish-eggs, shrimp and freshwater. International Journal of Food Microbiology. 34: 17-26. [DOI: 10.4315/0362-028X-63.5.579] [DOI:10.4315/0362-028X-63.5.579] [PMID]
22. Heinitz M.L., Ruble R.D., Wagner D.E., Tatini S.R. (2000). Incidence of Salmonella in fish and seafood. Journal of Food Protection. 63: 579-592. [DOI:10.4315/0362-028x-63.5.579[ [DOI:10.4315/0362-028X-63.5.579] [PMID]
23. Hill V.R., Cohen N., Kahler A.M., Jones J.L., Bopp C.A., Marano N., Tarr C.L., Garrett N.M., Boncy J., Henry A., Gómez G.A., Wellman M., et al. (2011). Toxigenic Vibrio cholerae O1 in water and seafood, Haiti. Emerging Infectious Diseases. 17: 2147-2150. [DOI: 10.3201/eid1711.110748] [DOI:10.3201/eid1711.110748]
24. Horowitz B.Z. (2010). Type E botulism. Clinical Toxicology. 48: 880-895. [DOI: 10.3109/15563650.2010.526943] [DOI:10.3109/15563650.2010.526943] [PMID]
25. Huss H.H., Reilly A., Ben Embarek P.K. (2000). Prevention and control of hazards in seafood. Food Control. 11: 149-156. [DOI:10.1016/S0956-7135(99)00087-0] [DOI:10.1016/S0956-7135(99)00087-0]
26. Iwamoto M., Ayers T., Mahon B.E., Swerdlow D.L. (2010). Epidemiology of seafood-associated infections in the United States. Clinical Microbiology Reviews. 23: 399-411. [DOI: 10.1128/CMR.00059-09] [DOI:10.1128/CMR.00059-09] [PMID] [PMCID]
27. Jami M., Ghanbari M., Zunabovic M., Domig K.J., Kneifel W. (2014). Listeria monocytogenes in aquatic food products-a review. Comprehensive Reviews in Food Science and Food Safety. 13: 798-813. [DOI: 10.1111/1541-4337.12092] [DOI:10.1111/1541-4337.12092]
28. Jones J.L., Ludeke C.H.M., Bowers J.C., DeRosia-Banick K., Carey D.H., Hastback W. (2014). Abundance of Vibrio cholerae, V. vulnificus, and V. parahaemolyticus in oysters (Crassostrea virginica) and clams (Mercenaria mercenaria) from Long Island sound. Applied and Environmental Microbiology. 80: 7667-7672. [DOI: 10.1128/AEM.02820-14] [DOI:10.1128/AEM.02820-14] [PMID] [PMCID]
29. Kim H.W., Hong Y.J., Jo J.I., Ha S.D., Kim S.H., Lee H.J., Rhee M.S. (2017). Raw ready-to-eat seafood safety: microbiological quality of the various seafood species available in fishery, hyper and online markets. Letters in Applied Microbiology. 64: 27-34. [DOI: 10.1111/lam.12688] [DOI:10.1111/lam.12688] [PMID]
30. Klein S.L., Lovell C.R. (2017). The hot oyster: levels of virulent Vibrio parahaemolyticus strains in individual oysters. FEMS Microbiology Ecology. 93: 232. [DOI: 10.1093/femsec/fiw232] [DOI:10.1093/femsec/fiw232] [PMID]
31. Konrad S., Paduraru P., Romero-Barrios P., Henderson S.B., Galanis E. (2017). Remote sensing measurements of sea surface temperature as an indicator of Vibrio parahaemolyticus in oyster meat and human illnesses. Environmental Health. 16: 92. [DOI: 10.1186/s12940-017-0301-x] [DOI:10.1186/s12940-017-0301-x] [PMID] [PMCID]
32. Lambertz S.T., Ivarsson S., Lopez-Valladares G., Sidstedt M., Lindqvist R. (2013). Subtyping of Listeria monocytogenes isolates recovered from retail ready-to-eat foods, processing plants and listeriosis patients in Sweden 2010. International Journal of Food Microbiology. 166: 186-192. [DOI: 10.1016/j.ijfoodmicro.2013.06.008] [DOI:10.1016/j.ijfoodmicro.2013.06.008] [PMID]
33. Lambertz S.T., Nilsson C., Bradenmark A., Sylven S., Johansson A., Jansson L.M., Lindblad M. (2012). Prevalence and level of Listeria monocytogenes in ready-to-eat foods in Sweden 2010. International Journal of Food Microbiology. 160: 24-31. [DOI: 10.1016/j.ijfoodmicro.2012.09.010] [DOI:10.1016/j.ijfoodmicro.2012.09.010] [PMID]
34. Latorre L., Parisi A., Fraccalvieri R., Normanno G., Nardella La Porta M.C., Goffredo E., Palazzo L., Ciccarese G., Addante N., Santagada G. (2007). Low prevalence of Listeria monocytogenes in foods from Italy. Journal of Food Protection. 70: 1507-1512. [DOI: 10.4315/0362-028X-70.6. 1507] [DOI:10.4315/0362-028X-70.6.1507] [PMID]
35. Leclair D., Farber J.M., Pagotto F., Suppa S., Doidge B., Austin J.W. (2017). Tracking sources of Clostridium botulinum type E contamination in seal meat. International Journal of Circumpolar Health. 76: 1380994. [DOI: 10.1080/22423982. 2017.1380994] [DOI:10.1080/22423982.2017.1380994] [PMID] [PMCID]
36. Mahaffey K.R., Clickner R.P., Jeffries R.A. (2008). Methylmercury and omega-3 fatty acids: co-occurrence of dietary sources with emphasis on fish and shellfish. Environmental Research. 107: 20-29. [DOI: 10.1016/j.envres.2007.09.011] [DOI:10.1016/j.envres.2007.09.011] [PMID]
37. McCoy E., Morrison J., Cook V., Johnston J., Eblen D., Guo C. (2011). Foodborne agents associated with the consumption of aquaculture catfish. Journal of Food Protection. 74: 500-516. [DOI: 10.4315/0362-028x.Jfp-10-341] [DOI:10.4315/0362-028X.JFP-10-341] [PMID]
38. Miettinen H., Wirtanen G. (2006). Ecology of Listeria spp. in a fish farm and molecular typing of Listeria monocytogenes from fish farming and processing companies. International Journal of Food Microbiology. 112: 138-146. [DOI: 10.1016/j.ijfoodmicro.2006.06.016] [DOI:10.1016/j.ijfoodmicro.2006.06.016] [PMID]
39. Miya S., Takahashi H., Ishikawa T., Fujii T., Kimura B. (2010). Risk of Listeria monocytogenes contamination of raw ready-to-eat seafood products available at retail outlets in Japan. Appllied and Environmental Microbiology. 76: 3383-3386. [DOI: 10.1128/AEM.01456-09] [DOI:10.1128/AEM.01456-09] [PMID] [PMCID]
40. Miyoshi S. (2006). Vibrio vulnificus infection and metalloprotease. The Journal of Dermatology. 33: 589-595. [DOI: 10.1111/j.1346-8138.2006.00139.x] [DOI:10.1111/j.1346-8138.2006.00139.x] [PMID]
41. Normanno G., Parisi A., Addante N., Quaglia N.C., Dambrosio A., Montagna C., Chiocco D. (2006). Vibrio parahaemolyticus, Vibrio vulnificus and microorganisms of fecal origin in mussels (Mytilus galloprovincialis) sold in the Puglia region (Italy). International Journal of Food Microbiology. 106: 219-222. [DOI: 10.1016/j.ijfoodmicro.2005.05.020] [DOI:10.1016/j.ijfoodmicro.2005.05.020] [PMID]
42. Novoslavskij A., Terentjeva M., Eizenberga I., Valciņa O., Bartkevičs V., Bērziņš A. (2016). Major foodborne pathogens in fish and fish products: a review. Annals of Microbiology. 66: 1-15. [DOI: 10.1007/s13213-015-1102-5] [DOI:10.1007/s13213-015-1102-5]
43. Oliver J.D. (2005). Wound infections caused by Vibrio vulnificus and other marine bacteria. Epidemiology and Infection. 133: 383-391. [DOI: 10.1017/S0950268805003894] [DOI:10.1017/S0950268805003894] [PMID] [PMCID]
44. Pagadala S., Parveen S., Rippen T., Luchansky J.B., Call J.E., Tamplin M.L., Porto-Fett A.C.S. (2012). Prevalence, characterization and sources of Listeria monocytogenes in blue crab (Callinectus sapidus) meat and blue crab processing plants. Food Microbiology. 31: 263-270. [DOI: 10.1016/j.fm.2012.03.015] [DOI:10.1016/j.fm.2012.03.015] [PMID]
45. Pagadala S., Parveen S., Schwarz J.G., Rippen T., Luchansky J.B. (2011). Comparison of automated BAX PCR and standard culture methods for detection of Listeria monocytogenes in blue Crabmeat (Callinectus sapidus) and blue crab processing plants. Journal of Food Protection. 74: 1930-1933. [DOI: 10.4315/0362-028X.JFP-11-213] [DOI:10.4315/0362-028X.JFP-11-213] [PMID]
46. Parisi A., Normanno G., Addante N., Dambrosio A., Montagna C.O., Quaglia N.C., Celano G.V., Chiocco D. (2004). Market survey of Vibrio spp. and other microrganisms in Italian shellfish. Journal of Food Protection. 67: 2284-2287. [DOI: 10.4315/0362-028X-67.10.2284] [DOI:10.4315/0362-028X-67.10.2284] [PMID]
47. Pekala-Safinska A. (2018). Contemporary threats of bacterial infections in freshwater fish. Journal of Veterniary Research. 62: 261-267. [DOI: 10.2478/jvetres-2018-0037] [DOI:10.2478/jvetres-2018-0037] [PMID] [PMCID]
48. Phan T.T., Khai L.T.L., Ogasawara N., Tam N.T., Okatani A.T., Akiba M., Hayashidani H. (2005). Contamination of Salmonella in retail meats and shrimps in the Mekong Delta, Vietnam. Journal of Food Protection. 68: 1077-1080. [DOI: 10.4315/0362-028X-68.5.1077]. [DOI:10.4315/0362-028X-68.5.1077] [PMID]
49. Rivera I.N.G., Chun J., Huq A., Sack R.B., Colwell R.R. (2001). Genotypes associated with virulence in environmental isolates of Vibrio cholerae. Applied and Environmental Microbiology. 67: 2421-2429. [DOI: 10.1128/AEM.67.6. 2421-2429.2001] [DOI:10.1128/AEM.67.6.2421-2429.2001] [PMID] [PMCID]
50. Rocourt J., BenEmbarek P., Toyofuku H., Schlundt J. (2003). Quantitative risk assessment of Listeria monocytogenes in ready-to-eat foods: the FAO/WHO approach. FEMS Immunology and Medical Microbiology. 35: 263-267. [DOI: 10.1016/s0928-8244(02)00468-6] [DOI:10.1016/S0928-8244(02)00468-6]
51. Scallan E., Hoekstra R.M., Angulo F.J., Tauxe R.V., Widdowson M.A., Roy S.L., Jones J.L., Griffin P.M. (2011). Foodborne illness acquired in the United States-major pathogens. Emerging Infectious Diseases. 17: 7-15. [DOI: 10.3201/ eid1701.P11101] [DOI:10.3201/eid1701.P11101]
52. Scharer K., Savioz S., Cernela N., Saegesser G., Stephan R. (2011). Occurrence of Vibrio spp. in fish and shellfish collected from the Swiss market. Journal of Food Protection. 74: 1345-1347. [DOI: 10.4315/0362-028X.JFP-11-001] [DOI:10.4315/0362-028X.JFP-11-001] [PMID]
53. Sergelidis D., Angelidis A.S. (2017). Methicillin-resistant Staphylococcus aureus: a controversial food-borne pathogen. Letters in Applied Microbiology. 64: 409-418. [DOI: 10.1111/lam.12735] [DOI:10.1111/lam.12735] [PMID]
54. Sujatha K., Senthilkumaar P., Sangeetha S., Gopalakrishnan M.D. (2011). Isolation of human pathogenic bacteria in two edible fishes, Priacanthus hamrur and Megalaspis cordyla at Royapuram waters of Chennai, India. Indian Journal of Science and Technology. 4: 539-541.
55. Taylor M., Cheng J., Sharma D., Bitzikos O., Gustafson R., Fyfe M., Greve R., Murti M., Stone J., Honish L., Mah V., Punja N., et al. (2018). Outbreak of Vibrio parahaemolyticus associated with consumption of raw oysters in Canada, 2015. Foodborne Pathogens and Disease. 15: 554-559. [DOI: 10.1089/fpd.2017.2415] [DOI:10.1089/fpd.2017.2415] [PMID]
56. Tedde T., Marangi M., Papini R., Salza S., Normanno G., Virgilio S., Giangaspero A. (2019). Toxoplasma gondii and other zoonotic protozoans in Mediterranean mussel (Mytilus galloprovincialis) and blue mussel (Mytilus edulis): a food safety concern? Journal of Food Protection. 82: 535-542. [DOI: 10.4315/0362-028X.JFP-18-157] [DOI:10.4315/0362-028X.JFP-18-157] [PMID]
57. Thompson C.K., Wang Q., Bag S.K., Franklin N., Shadbolt C.T., Howard P., Fearnley E.J., Quinn H.E., Sintchenko V., Hope K.G. (2017). Epidemiology and whole genome sequencing of an ongoing point-source Salmonella Agona outbreak associated with sushi consumption in western Sydney, Australia 2015. Epidemiology and Infection. 145: 2062-2071. [DOI: 10.1017/s0950268817000693] [DOI:10.1017/S0950268817000693] [PMID]
58. Velazquez-Roman J., Leon-Sicairos N., de Jesus Hernandez-Diaz L., Canizalez-Roman A. (2014). Pandemic Vibrio parahaemolyticus O3:K6 on the American continent. Frontiers in Cellular and Infection Microbiology. 3: 110. [DOI: 10.3389/fcimb.2013.00110] [DOI:10.3389/fcimb.2013.00110] [PMID] [PMCID]
59. Vongkamjan K., Fuangpaiboon J., Jirachotrapee S., Turner M.P. (2015). Occurrence and diversity of Listeria spp. in seafood processing plant environments. Food Control. 50: 265-272. [DOI: 10.1016/j.foodcont.2014.09.001] [DOI:10.1016/j.foodcont.2014.09.001]
60. Walton R.N., Clemens A., Chung J., Moore S., Wharton D., Haydu L., de Villa E., Sanders G., Bussey J., Richardson D., Austin J.W. (2014). Outbreak of type E foodborne botulism linked to traditionally prepared salted fish in Ontario, Canada. Foodborne Pathogens and Disease. 11: 830-834. [DOI: 10.1089/fpd.2014.1783] [DOI:10.1089/fpd.2014.1783] [PMID]
61. Wan Norhana M.N., Poole S.E., Deeth H.C., Dykes G.A. (2010). The effects of temperature, chlorine and acids on the survival of Listeria and Salmonella strains associated with uncooked shrimp carapace and cooked shrimp flesh. Food Microbiology. 27: 250-256. [DOI: 10.1016/j.fm.2009.10.008] [DOI:10.1016/j.fm.2009.10.008] [PMID]
62. Wang F., Jiang L., Yang Q., Han F., Chen S., Pu S., Vance A., Ge B. (2011). Prevalence and antimicrobial susceptibility of major foodborne pathogens in imported seafood. Journal of food protection. 74: 1451-1461. [DOI: 10.4315/0362-028X.JFP-11-146] [DOI:10.4315/0362-028X.JFP-11-146] [PMID]
63. Yang Y., Xie J., Li H., Tan S., Chen Y., Yu H. (2017). Prevalence, antibiotic susceptibility and diversity of Vibrio parahaemolyticus isolates in seafood from South China. Frontiers in Microbiology. 8: 2566. [DOI: 10.3389/fmicb. 2017.02566] [DOI:10.3389/fmicb.2017.02566] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

© 2021 All Rights Reserved | Journal of food quality and hazards control

Designed & Developed by : Yektaweb