Volume 7, Issue 2 (June 2020)                   J. Food Qual. Hazards Control 2020, 7(2): 52-59 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kataria J, Morey A. Antimicrobial Interventions in Poultry Processing to Improve Shelf Life and Safety of Poultry Meat: A Review with Special Attention to Salmonella spp.. J. Food Qual. Hazards Control. 2020; 7 (2) :52-59
URL: http://jfqhc.ssu.ac.ir/article-1-608-en.html
Department of Poultry Science, Auburn University, Auburn AL 36849 USA , azm0011@auburn.edu
Abstract:   (494 Views)
Poultry meat is one of the most popularly consumed meats worldwide. With the increased consumption, the poultry industry is also facing major challenges in maintaining of safety and shelf life of the poultry meat. Microbial concerns related to poultry meat comprise of meat safety and shelf life as poultry meat is prone to contamination with spoilage as well as pathogenic microorganisms. Poultry may be contaminated with pathogenic microorganisms such as Salmonella spp. at various processing steps, posing significant health risk to the consumers. To reduce the predominance of food-borne pathogens such as Salmonella spp. as well as spoilage microorganisms, poultry processors can employ a multi-hurdle approach wherein antimicrobial interventions are applied at various steps of processing. This article reviewed different poultry processing steps and the antimicrobial interventions used in the poultry processing sector to improve safety, shelf life, and quality of poultry meat. This review provides comprehensive knowledge on safety of poultry meat with special attention to Salmonella spp. for the poultry industry as well as researchers throughout the world.

DOI: 10.18502/jfqhc.7.2.2884
Full-Text [PDF 542 kb]   (182 Downloads)    
Type of Study: Review article | Subject: Special
Received: 19/09/25 | Accepted: 20/02/23 | Published: 20/06/18

References
1. Alvarado C., McKee S. (2007). Marination to improve functional properties and safety of poultry meat. Journal of Applied Poultry Research. 16: 113-120. [DOI: 10.1093/japr/16.1.113] [DOI:10.1093/japr/16.1.113]
2. Anang D.M., Rusul G., Ling F.H., Bhat R. (2010). Inhibitory effects of lactic acid and lauricidin on spoilage organisms of chicken breast during storage at chilled temperature. International Journal of Food Microbiology. 144: 152-159. [DOI: 10.1016/j. ijfoodmicro.2010.09.014] [DOI:10.1016/j.ijfoodmicro.2010.09.014] [PMID]
3. Bailey J.S., Lyon B.G., Lyon C.E., Windham W.R. (2000). The microbiological profile of chilled and frozen chicken. Journal of Food Protection. 63: 1228-1230. [DOI: 10.4315/0362-028X-63.9.1228] [DOI:10.4315/0362-028X-63.9.1228] [PMID]
4. Bales B.L., Messina L., Vidal A., Peric M., Nascimento O.R. (1998). Precision relative aggregation number determinations of SDS micelles using a spin probe. A model of micelle surface hydration. The Journal of Physical Chemistry B. 102: 10347-10358. [DOI: 10.1021/jp983364a] [DOI:10.1021/jp983364a]
5. Barbut S. (2010). Past and future of poultry meat harvesting technologies. Worlds Poultry Science Journal. 66: 399-410. [DOI: 10.1017/S0043933910000498] [DOI:10.1017/S0043933910000498]
6. Barmpalia I.M., Koutsoumanis K.P., Geornaras I., Belk K.E., Scanga J.A., Kendall P.A., Smith G.C., Sofos J.N. (2005). Effect of antimicrobials as ingredients of pork bologna for Listeria monocytogenes control during storage at 4 or 10 °C. Food Microbiology. 22: 205-211. [DOI: 10.1016/j.fm.2004.08. 003] [DOI:10.1016/j.fm.2004.08.003]
7. Bauermeister L.J., Bowers J.W.J., Townsend J.C., McKee S.R. (2008). The microbial and quality properties of poultry carcasses treated with peracetic acid as an antimicrobial treatment. Poultry Science. 87: 2390-2398. [DOI: 10.3382/ps. 2008-00087] [DOI:10.3382/ps.2008-00087] [PMID]
8. Berrang M.E., Bailey J.S. (2009). On-line brush and spray washers to lower numbers of Campylobacter and Escherichia coli and presence of Salmonella on broiler carcasses during processing. Journal of Applied Poultry Research. 18: 74-78. [DOI: 10.3382/japr.2008-00067] [DOI:10.3382/japr.2008-00067]
9. Bolder N.M. (2007). Microbial challenges of poultry meat production. World's Poultry Science Journal. 63: 401-411. [DOI: 10.1017/S0043933907001535]. [DOI:10.1017/S0043933907001535]
10. Bourassa D.V., Lapidus J.L., Kennedy-Smith A.E., Morey A. (2019). Efficacy of neutralizing buffered peptone water for recovery of Salmonella, Campylobacter, and Enterobacteriaceae from broiler carcasses at various points along a commercial immersion chilling process with peroxyacetic acid. Poultry Science. 98: 393-397. [DOI: 10.3382/ps/pey361]. [DOI:10.3382/ps/pey361] [PMID]
11. Buhr R.J., Walker J.M., Bourassa D.V., Caudill A.B., Kiepper B.H., Zhuang H. (2014). Impact of broiler processing scalding and chilling profiles on carcass and breast meat yield. Poultry Science. 93: 1534-1541. [DOI: 10.3382/ps.2013-03535] [DOI:10.3382/ps.2013-03535] [PMID]
12. Buňková L., Pleva P., Buňka F., Valášek P., Kráčmar S. (2008). Antibacterial effects of commercially available phosphates on selected microorganisms. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 56: 19-24. [DOI: 10.11118/actaun200856050019] [DOI:10.11118/actaun200856050019]
13. Carroll C.D., Alvarado C.Z., Brashears M.M., Thompson L.D., Boyce J. (2007). Marination of turkey breast fillets to control the growth of Listeria monocytogenes and improve meat quality in deli loaves. Poultry Science. 86: 150-155. [DOI: 10.1093/ ps/86.1.150] [DOI:10.1093/ps/86.1.150] [PMID]
14. Centers for Disease Control and Prevention (CDC). (2018). Outbreak of Salmonella infections linked to chicken. URL: https: //www.cdc.gov/salmonella/chicken-08-18/index.html. Accessed 1 March 2019.
15. Chen J., Pavlostathis S.G. (2019). Peracetic acid fate and decomposition in poultry processing wastewater streams. Bioresource Technology Reports. 7: 100285. [DOI: 10.1016/j. biteb.2019.100285] [DOI:10.1016/j.biteb.2019.100285]
16. Davidson P.M., Taylor T.M., Schmidt S.E. (2013). Chemical preservatives and natural antimicrobial compounds. In: Doyle M.P., Buchanan R.L. (Editors). Food microbiology. 4th edition. American Society of Microbiology. Washington, D.C. pp: 765-801. [DOI:10.1128/9781555818463.ch30]
17. Del Río E., Alonso-Calleja C., Capita R. (2005). Effectiveness of trisodium phosphate treatment against pathogenic and spoilage bacteria on poultry during refrigerated storage. Journal of Food Protection. 68: 866-869. [DOI: 10.4315/0362-028X-68.4.866] [DOI:10.4315/0362-028X-68.4.866] [PMID]
18. Doulgeraki A.I., Ercolini D., Villani F., Nychas G.J.E. (2012). Spoilage microbiota associated to the storage of raw meat in different conditions. International Journal of Food Microbiology. 157: 130-141. [DOI: 10.1016/j.ijfoodmicro. 2012.05.020] [DOI:10.1016/j.ijfoodmicro.2012.05.020] [PMID]
19. Ercolini D., Russo F., Blaiotta G., Pepe O., Mauriello G., Villani F. (2007). Simultaneous detection of Pseudomonas fragi, P. lundensis, and P. putida from meat by use of a multiplex PCR assay targeting the carA gene. Applied and Environmental Microbiology. 73: 2354-2359. [DOI: 10.1128/AEM.02603-06] [DOI:10.1128/AEM.02603-06] [PMID] [PMCID]
20. Fabrizio K.A., Sharma R.R., Demirci A., Cutter C.N. (2002). Comparison of electrolyzed oxidizing water with various antimicrobial interventions to reduce Salmonella species on poultry. Poultry Science. 81: 1598-1605. [DOI: 10.1093/ps/81. 10.1598] [DOI:10.1093/ps/81.10.1598] [PMID]
21. Fletcher D.L. (2002). Poultry meat quality. World's Poultry Science Journal. 58: 131-145. [DOI: 10.1079/WPS20020013] [DOI:10.1079/WPS20020013]
22. Fratamico P.M., Juneja V., Annous B.A., Rasanayagam V., Sundar M., Braithwaite D., Fisher S. (2012). Application of ozonated dry ice (ALIGALTM Blue Ice) for packaging and transport in the food industry. Journal of Food Science. 77: 285-291. [DOI: 10.1111/j.1750-3841.2012.02682.x] [DOI:10.1111/j.1750-3841.2012.02682.x] [PMID]
23. Gram L., Ravn L., Rasch M., Bruhn J.B., Christensen A.B., Givskov M. (2002). Food spoilage-interactions between food spoilage bacteria. International Journal of Food Microbiology. 78: 79-97. [DOI: 10.1016/S0168-1605(02)00233-7] [DOI:10.1016/S0168-1605(02)00233-7]
24. Hinton A., Cason J.A., Ingram K.D. (2004). Tracking spoilage bacteria in commercial poultry processing and refrigerated storage of poultry carcasses. International Journal of Food Microbiology. 91: 155-165. [DOI: 10.1016/S0168-1605(03) 00377-5] [DOI:10.1016/S0168-1605(03)00377-5]
25. Irshad A., Arun T.S. (2013). Scalding and its significance in livestock slaughter and wholesome meat production. International Journal of Livestock Research. 3: 45-53.
26. Jeyasekaran G., Ganesan P., Shakila R.J., Maheswari K., Sukumar D. (2004). Dry ice as a novel chilling medium along with water ice for short-term preservation of fish Emperor breams, lethrinus (Lethrinus miniatus). Innovative Food Science and Emerging Technologies. 5: 485-493. [DOI: 10.1016/j.ifset. 2004.06.003] [DOI:10.1016/j.ifset.2004.06.003]
27. Kim C.R., Marshall D.L. (1999). Microbiological, colour and sensory changes of refrigerated chicken legs treated with selected phosphates. Food Research International. 32: 209-215. [DOI: 10.1016/S0963-9969(99)00089-7] [DOI:10.1016/S0963-9969(99)00089-7]
28. Kim J.G., Yousef A.E., Dave S. (1999). Application of ozone for enhancing the microbiological safety and quality of foods: a review. Journal of Food Protection. 62: 1071-1087. [DOI: 10.4315/0362-028X-62.9.1071] [DOI:10.4315/0362-028X-62.9.1071] [PMID]
29. Kitis M. (2004). Disinfection of wastewater with peracetic acid: a review. Environment International. 30: 47-55. [DOI: 10.1016/ S0160-4120(03)00147-8] [DOI:10.1016/S0160-4120(03)00147-8]
30. Lin K.W., Lin S.N. (2002). Effects of sodium lactate and trisodium phosphate on the physicochemical properties and shelf life of low-fat Chinese-style sausage. Meat Science. 60: 147-154. [DOI: 10.1016/S0309-1740(01)00116-4] [DOI:10.1016/S0309-1740(01)00116-4]
31. Mantilla S.P.S., Santos É.B., Vital H.D.C., Mano S.B., Freitas M.Q.D., Franco R.M. (2011). Microbiology, sensory evaluation and shelf life of irradiated chicken breast fillets stored in air or vacuum. Brazilian Archives of Biology and Technology. 54: 569-576. [DOI: 10.1590/S1516-89132011000300019] [DOI:10.1590/S1516-89132011000300019]
32. Mataragas M., Drosinos E.H., Vaidanis A., Metaxopoulos I. (2006). Development of a predictive model for spoilage of cooked cured meat products and its validation under constant and dynamic temperature storage conditions. Journal of Food Science. 71: 157-167. [DOI: 10.1111/j.1750-3841.2006. 00058.x] [DOI:10.1111/j.1750-3841.2006.00058.x]
33. Mbandi E., Shelef L.A. (2002). Enhanced antimicrobial effects of combination of lactate and diacetate on Listeria monocytogenes and Salmonella spp. in beef bologna. International Journal of Food Microbiology. 76: 191-198. [DOI: 10.1016/S0168-1605 (02)00026-0] [DOI:10.1016/S0168-1605(02)00026-0]
34. McGee M.R., Henry K.L., Brooks J.C., Ray F.K., Morgan J.B. (2003). Injection of sodium chloride, sodium tripolyphosphate, and sodium lactate improves Warner-Bratzler shear and sensory characteristics of pre-cooked inside round roasts. Meat Science. 64: 273-277. [DOI: 10.1016/S0309-1740(02)00189-4] [DOI:10.1016/S0309-1740(02)00189-4]
35. McKee S.R., Townsend J.C., Bilgili S.F. (2008). Use of a scald additive to reduce levels of Salmonella Typhimurium during poultry processing. Poultry Science. 87: 1672-1677. [DOI: 10.3382/ps.2008-00061] [DOI:10.3382/ps.2008-00061] [PMID]
36. Mead G.C. (2004). Microbiological quality of poultry meat : a review. Brazilian Journal of Poultry Science. 6: 135-142. [DOI: 10.1590/S1516-635X2004000300001] [DOI:10.1590/S1516-635X2004000300001]
37. Morey A., Singh M. (2012). Low-temperature survival of Salmonella spp. in a model food system with natural microflora. Foodborne Pathogens and Disease. 9: 218-223. [DOI: 10.1089/fpd.2011.1016] [DOI:10.1089/fpd.2011.1016] [PMID]
38. Nagel G.M., Bauermeister L.J., Bratcher C.L., Singh M., McKee S.R. (2013). Salmonella and Campylobacter reduction and quality characteristics of poultry carcasses treated with various antimicrobials in a post-chill immersion tank. International Journal of Food Microbiology. 165: 281-286. [DOI: 10.1016/j. ijfoodmicro.2013.05.016] [DOI:10.1016/j.ijfoodmicro.2013.05.016] [PMID]
39. Nychas G.J.E., Skandamis P.N., Tassou C.C., Koutsoumanis K.P. (2008). Meat spoilage during distribution. Meat Science. 78: 77-89. [DOI: 10.1016/j.meatsci.2007.06.020] [DOI:10.1016/j.meatsci.2007.06.020] [PMID]
40. Okolocha E.C., Ellerbroek L. (2005). The influence of acid and alkaline treatments on pathogens and the shelf life of poultry meat. Food Control. 16: 217-225. [DOI: 10.1016/j.foodcont. 2004.01.015] [DOI:10.1016/j.foodcont.2004.01.015]
41. Oral N., Gulmez M., Vatansever L., Abamüslüm G. (2008). Application of antimicrobial ice for extending shelf-life of fish. Journal of Food Protection. 71: 218-222. [DOI: 10.4315/0362-028X-71.1.218] [DOI:10.4315/0362-028X-71.1.218] [PMID]
42. Ozdemir H., Pamuk S. (2006). Acidified sodium chlorite, trisodium phosphate and populations of Salmonella Typhimurium and Staphylococcus aureus on chicken‐breast skin. Journal of Food Processing and Preservation. 30: 110-117. [DOI: 10.1111/j. 1745-4549.2006.00053.x] [DOI:10.1111/j.1745-4549.2006.00053.x]
43. Paul N.C., Sullivan T.S., Shah D.H. (2017). Differences in antimicrobial activity of chlorine against twelve most prevalent poultry-associated Salmonella serotypes. Food Microbiology. 64: 202-209. [DOI: 10.1016/j.fm.2017.01.004] [DOI:10.1016/j.fm.2017.01.004] [PMID]
44. Pothakos V., Devlieghere F., Villani F., Björkroth J., Ercolini D. (2015). Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Science. 109: 66-74. [DOI: 10.1016/j. meatsci.2015.04.014] [DOI:10.1016/j.meatsci.2015.04.014] [PMID]
45. Pradhan A.K., Li M., Li Y., Kelso L.C., Costello T.A., Johnson M.G. (2012). A modified Weibull model for growth and survival of Listeria innocua and Salmonella Typhimurium in chicken breasts during refrigerated and frozen storage. Poultry Science. 91: 1482-1488. [DOI: 10.3382/ps.2011-01851] [DOI:10.3382/ps.2011-01851] [PMID]
46. Rasschaert G., Houf K., Godard C., Wildemauwe C., Pastuszczak-Frak M., De Zutter L. (2008). Contamination of carcasses with Salmonella during poultry slaughter. Journal of Food Protection. 71: 146-152. [DOI: 10.4315/0362-028X-71.1.146] [DOI:10.4315/0362-028X-71.1.146] [PMID]
47. Rodriguez de Ledesma A.M., Riemann H.P., Farver T.B. (1996). Short-time treatment with alkali and/or hot water to remove common pathogenic and spoilage bacteria from chicken wing skin. Journal of Food Protection. 59: 746-750. [DOI: 10.4315/ 0362-028X-59.7.746] [DOI:10.4315/0362-028X-59.7.746] [PMID]
48. Rouger A., Tresse O., Zagorec M. (2017). Bacterial contaminants of poultry meat: sources, species, and dynamics. Microorganisms. 5: 50. [DOI: 10.3390/microorganisms5030050] [DOI:10.3390/microorganisms5030050] [PMID] [PMCID]
49. Sen A.R., Naveena B.M., Muthukumar M., Babji Y., Murthy T.R.K. (2005). Effect of chilling, polyphosphate and bicarbonate on quality characteristics of broiler breast meat. British Poultry Science. 46: 451-456. [DOI: 10.1080/00071660500191072] [DOI:10.1080/00071660500191072] [PMID]
50. Shin J.H., Chang S., Kang D.H. (2004). Application of antimicrobial ice for reduction of foodborne pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes) on the surface of fish. Journal of Applied Microbiology. 97: 916-922. [DOI: 10.1111/j.1365-2672.2004. 02343.x] [DOI:10.1111/j.1365-2672.2004.02343.x] [PMID]
51. Simmons M., Fletcher D.L., Cason J.A., Berrang M.E. (2003). Recovery of Salmonella from retail broilers by a whole-carcass enrichment procedure. Journal of Food Protection. 66: 446-450. [DOI: 10.4315/0362-028X-66.3.446] [DOI:10.4315/0362-028X-66.3.446] [PMID]
52. Smaoui S., Hlima H.B., Salah R.B., Ghorbel R. (2011). Effects of sodium lactate and lactic acid on chemical, microbiological and sensory characteristics of marinated chicken. African Journal of Biotechnology. 10: 11317-11326. [DOI: 10.5897/AJB11.1249] [DOI:10.5897/AJB11.1249]
53. Smith D.P., Young L.L. (2007). Marination pressure and phosphate effects on broiler breast fillet yield, tenderness, and color. Poultry Science. 86: 2666-2670. [DOI: 10.3382/ps.2007-00144] [DOI:10.3382/ps.2007-00144] [PMID]
54. Sofos J.N. (2008). Challenges to meat safety in the 21st century. Meat Science. 78: 3-13. [DOI: 10.1016/j.meatsci.2007.07.027] [DOI:10.1016/j.meatsci.2007.07.027] [PMID]
55. Taskila S., Tuomola M., Ojamo H. (2012). Enrichment cultivation in detection of food-borne Salmonella. Food Control. 26: 369-377. [DOI: 10.1016/j.foodcont.2012.01.043] [DOI:10.1016/j.foodcont.2012.01.043]
56. United States Department of Agriculture (USDA). (2003). FSIS safety and security guidelines for the transportation and distribution of meat, poultry, and egg products. United States Department of Agriculture.
57. Vareltzis K., Soultos N., Koidis P., Ambrosiadis J., Genigeorgis C. (1997). Antimicrobial effects of sodium tripolyphosphate against bacteria attached to the surface of chicken carcasses. LWT-Food Science and Technology. 30: 665-669. [DOI: 10.1006/fstl.1997.0233] [DOI:10.1006/fstl.1997.0233]
58. Wideman N., Bailey M., Bilgili S.F., Thippareddi H., Wang L., Bratcher C., Sanchez-Plata M., Singh M. (2016). Evaluating best practices for Campylobacter and Salmonella reduction in poultry processing plants. Poultry Science. 95: 306-315. [DOI: 10.3382/ps/pev328] [DOI:10.3382/ps/pev328] [PMID]
59. Williams S.K., Phillips K. (1998). Sodium lactate affects sensory and objective characteristics of tray-packed broiler chicken breast meat. Poultry Science. 77: 765-769. [DOI: 10.1093/ ps/77.5.765] [DOI:10.1093/ps/77.5.765]
60. Wynveen E.J., Bowker B.C., Grant A.L., Lamkey J.W., Fennewald K.J., Henson L., Gerrard D.E. (2001). Pork quality is affected by early postmortem phosphate and bicarbonate injection. Journal of Food Science. 66: 886-891. [DOI: 10.1111/j.1365-2621.2001.tb15191.x] [DOI:10.1111/j.1365-2621.2001.tb15191.x]
61. Zaki H.M.B.A., Mohamed H.M.H., El-Sherif A.M.A. (2015). Improving the antimicrobial efficacy of organic acids against Salmonella Enterica attached to chicken skin using SDS with acceptable sensory quality. LWT-Food Science and Technology. 64: 558-564. [DOI: 10.1016/j.lwt.2015.06.012] [DOI:10.1016/j.lwt.2015.06.012]
62. Zhang L., Morey A., Bilgili S.F., McKee S.R., Garner L.J. (2019). Effectiveness of several antimicrobials and the effect of contact time in reducing Salmonella and Campylobacter on poultry drumsticks. Journal of Applied Poultry Research. 28: 1143-1149. [DOI: 10.3382/japr/pfz080]. [DOI:10.3382/japr/pfz080]
63. Zheng M., Detienne N.A., Barnes B.W., Wicker L. (2001). Tenderness and yields of poultry breast are influenced by phosphate type and concentration of marinade. Journal of the Science of Food and Agriculture. 81: 82-87. [DOI: 10.1002/1097-0010(20010101)81:1<82::AID-JSFA783>3.0. CO;2-7] [DOI:10.1002/1097-0010(20010101)81:13.0.CO;2-7]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2020 All Rights Reserved | Journal of food quality and hazards control

Designed & Developed by : Yektaweb