Volume 7, Issue 1 (March 2020)                   J. Food Qual. Hazards Control 2020, 7(1): 18-26 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asiegbu C, Lebelo S, Tabit F. Microbial Quality of Ready-to-Eat Street Vended Food Groups Sold in the Johannesburg Metropolis, South Africa. J. Food Qual. Hazards Control 2020; 7 (1) :18-26
URL: http://jfqhc.ssu.ac.ir/article-1-637-en.html
Department of Life and Consumer Sciences, University of South Africa, Cnr Christiaan de Wet Road and Pioneer Avenue, Florida, Roodepoort 1710, Johannesburg, South Africa , tabitft@unisa.ac.za
Abstract:   (3229 Views)
Background: In many developing countries, the risk of contracting a food-borne disease is high after consuming contaminated ready-to-eat Street-Vended Foods (SVFs). The main objective of this research was to assess the microbiological quality of SVF groups sold in the Johannesburg Metropolis, South Africa.
Methods: A stratified random sampling procedure was used for collecting the ready-to-eat SVF samples. Methods prescribed by the International Organization for Standardization (ISO) were used for analyses for aerobic colony count, Enterobacteriaceae count, presence of Escherichia coli O15:H7, detection of Salmonella, Staphylococcus aureus, and Listeria monocytogenes. The bacterial isolates were identified by 16S rRNA gene sequencing. Data analysis was done using IBM SPSS Statistics V25.0.
Results: Of the 205 ready-to-eat SVF samples, 85.37% had aerobic growth. The vast majority (78.18%) of the 110 ready-to-eat SVF samples had Enterobacteriaceae growth. From the 110 SVF samples, the prevalence rates of L. monocytogenes, S. aureus, Salmonella spp., and E. coli O15:H7 were 46.36, 31.8, 21.8, and 1.8%, respectively. There was no statistical significant difference (p>0.05) in the prevalence rates of L. monocytogenes, S. aureus, Salmonella spp., and E. coli O15:H7 in the various SVF groups.
Conclusion: Based on the findings of this study, the microbial quality and safety of ready-to-eat SVFs sold in the Johannesburg Metropolis remain a serious public health concern. Hence, it is necessary to educate street food vendors and enforce food safety legislation in the street food sector in the country.

DOI: 10.18502/jfqhc.7.1.2448
Full-Text [PDF 394 kb]   (1194 Downloads)    
Type of Study: Original article | Subject: Special
Received: 19/03/06 | Accepted: 19/08/08 | Published: 20/03/06

References
1. Alimi B.A. (2016). Risk factors in street food practices in developing countries: a review. Food Science and Human Wellness. 5: 141-148. [DOI: 10.1016/j.fshw.2016.05.001] [DOI:10.1016/j.fshw.2016.05.001]
2. Amare A., Worku T., Ashagirie B., Adugna M., Getaneh A., Dagnew M. (2019). Bacteriological profile, antimicrobial susceptibility patterns of the isolates among street vended foods and hygienic practice of vendors in Gondar town, Northwest Ethiopia: a cross sectional study. BMC Microbiology. 19: 120. [DOI: 10.1186/s12866-019-1509-4] [DOI:10.1186/s12866-019-1509-4] [PMID] [PMCID]
3. Asiegbu C.V., Lebelo S.L., Tabit F.T. (2016). The food safety knowledge and microbial hazards awareness of consumers of ready-to-eat street-vended food. Food Control. 60: 422-429. [DOI: 10.1016/j.foodcont.2015.08.021] [DOI:10.1016/j.foodcont.2015.08.021]
4. Bereda T.W., Emerie Y.M., Reta M.A., Asfaw H.S. (2016). Microbiological safety of street vended foods in Jigjiga City, Eastern Ethiopia. Ethiopian Journal of Health Science. 26: 163-172. [DOI: 10.4314/ejhs.v26i2.10] [DOI:10.4314/ejhs.v26i2.10] [PMID] [PMCID]
5. Caldera L., Franzetti L., Van Coillie E., De Vos P., Stragier P., De Block J., Heyndrickx M. (2016). Identification, enzymatic spoilage characterization and proteolytic activity quantification of Pseudomonas spp. isolated from different foods. Food Microbiology. 54: 142-153. [DOI: 10.1016/j.fm.2015.10.004] [DOI:10.1016/j.fm.2015.10.004]
6. Campos J., Gil J., Mourão J., Peixe L., Antunes P. (2015). Ready-to-eat street-vended food as a potential vehicle of bacterial pathogens and antimicrobial resistance: an exploratory study in Porto region, Portugal. International Journal of Food Microbiology. 206: 1-6. [DOI: 10.1016/j.ijfoodmicro.2015.04. 016] [DOI:10.1016/j.ijfoodmicro.2015.04.016] [PMID]
7. Department of Health (DOH). (2011). Regulations governing microbiological standards for foodstuffs and related matters as amended by Government Gazette 34582 on 2 September 2011. Department of Health, Republic of South Africa.
8. Food Safety Authority of Ireland (FSAI). (2016). Guidelines for the interpretation of results of microbiological testing of ready-to-eat foods placed on the market. 2nd revision. Guidance Note No. 3.
9. Gambarin P., Magnabosco C., Losio M.N., Pavoni E., Gattuso A., Arcangeli G., Favretti M. (2012). Listeria monocytogenes in ready-to-eat seafood and potential hazards for the consumers. International Journal of Microbiology. [DOI: 10.1155/2012/ 497635]. [DOI:10.1155/2012/497635] [PMID] [PMCID]
10. Hossain M., Dey B.K. (2019). Microbial contamination of handmade sauce used by street food vendors in Jashore, Bangladesh. Journal Food Quality and Hazards Control. 6 :115-120. [DOI: 10.18502/jfqhc.6.3.1385] [DOI:10.18502/jfqhc.6.3.1385]
11. International Organization for Standardization (ISO). (2001). Microbiology of food and animal feeding stuffs-Horizontal method for the detection of Escherichia coli 0157. Standard No. 16654.
12. International Organization for Standardization (ISO). (2002). Microbiology of food and animal feeding stuffs-Horizontal method for the detection of Salmonella spp. Standard No. 6579.
13. International Organization for Standardization (ISO). (2003). Microbiology of food and animal feeding stuffs-Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species)-Part 3: detection and MPN technique for low numbers. Standard No. 6888-3.
14. International Organization for Standardization (ISO). (2004). Microbiology of food and animal feeding stuffs-Horizontal methods for the detection and enumeration of Enterobacteriaceae-Part 2: colony-count method Standard No. 21528-2.
15. International Organization for Standardization (ISO). (2013). Microbiology of the food chain -horizontal method for the enumeration of microorganisms-Part 2: colony count at 30 degrees C by the surface plating technique. Standard No. 4833-2.
16. International Organization for Standardization (ISO). (2017). Microbiology of the food chain-Horizontal methods for the detection and enumeration of Listeria monocytogenes and Listeria spp. Part 1: detection method. Standard No. 11290-1.
17. Jain S., Nagarjuna D., Gaind R., Chopra S., Debata P.K., Dawar R., Sardana R., Yadav M. (2016). Escherichia vulneris: an unusual cause of complicated diarrhea and sepsis in an infant. A case report and review of literature. New Microbes and New Infections. 13: 83-86. [DOI: 10.1016/j.nmni.2016.07.002] [DOI:10.1016/j.nmni.2016.07.002] [PMID] [PMCID]
18. Khongtong J., Ab Karim S., Othman M., Bolong J. (2014). Consumption pattern and consumers' opinion toward street food in Nakhon Si Thammarat Province, Thailand. International Food Research Journal. 21: 125-130.
19. Kibret M., Tadesse M. (2013). The bacteriological safety and antimicrobial susceptibility of bacteria isolated from street-vended white lupin (Lupinus albus) in Bahir Dar, Ethiopia. Ethiopian Journal of Health Sciences. 23: 19-26.
20. Kothe C.I., Schild C.H., Tondo E.C., Malheiros P.S. (2016). Microbiological contamination and evaluation of sanitary conditions of hot dog street vendors in Southern Brazil. Food Control. 62: 346-350. [DOI: 10.1016/j.foodcont.2015.11.005] [DOI:10.1016/j.foodcont.2015.11.005]
21. Kotzekidou P. (2013). Microbiological examination of ready-to-eat foods and ready-to-bake frozen pastries from university canteens. Food Microbiology. 34: 337-343. [DOI: 10.1016/j. fm.2013.01.005] [DOI:10.1016/j.fm.2013.01.005] [PMID]
22. Liang W.L., Pan Y.L., Cheng H.L., Li T.C., Yu P.H.F., Chan S.W. (2016). The microbiological quality of take-away raw salmon finger sushi sold in Hong Kong. Food Control. 69: 45-50. [DOI: 10.1016/j.foodcont.2016.04.015] [DOI:10.1016/j.foodcont.2016.04.015]
23. Lister P.D., Wolter D.J., Hanson N.D. (2009). Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clinical Microbiology Reviews. 22: 582-610. [DOI: 10.1128/CMR.00040-09] [DOI:10.1128/CMR.00040-09] [PMID] [PMCID]
24. National Institute of Communicable Diseases (NICD). (2018). Situation update on listeriosis outbreak, South Africa. National Institute of Communicable Diseases, South Africa.
25. Ng Y.F., Wong S.L., Cheng H.L., Yu P.H.F., Chan S.W. (2013). The microbiological quality of ready-to-eat food in Siu Mei and Lo Mei shops in Hong Kong. Food Control. 34: 547-553. [DOI: 10.1016/j.foodcont.2013.05.018]. [DOI:10.1016/j.foodcont.2013.05.018]
26. Oguttu J.W., McCrindle C.M.E., Makita K., Grace D. (2014). Investigation of the food value chain of ready-to-eat chicken and the associated risk for staphylococcal food poisoning in Tshwane metropole, South Africa. Food Control. 45: 87-94. [DOI: 10.1016/j.foodcont.2014.04.026] [DOI:10.1016/j.foodcont.2014.04.026]
27. Olofsson T.C., Ahrné S., Molin G. (2007). The bacterial flora of vacuum-packed cold-smoked salmon stored at 7 °C, identified by direct 16S rRNA gene analysis and pure culture technique. Journal of Applied Microbiology. 103: 109-119. [DOI: 10.1111/j.1365-2672.2006.03216.x] [DOI:10.1111/j.1365-2672.2006.03216.x] [PMID]
28. Rajmohan S., Dodd C.E.R., Waites W.M. (2002). Enzymes from isolates of Pseudomonas fluorescens involved in food spoilage. Journal of Applied Microbiology. 93: 205-213. [DOI: 10.1046/j.1365-2672.2002.01674.x] [DOI:10.1046/j.1365-2672.2002.01674.x] [PMID]
29. Rane S. (2011). Street vended food in developing world: hazard analyses. Indian Journal of Microbiology. 51: 100-106. [DOI: 10.1007/s12088-011-0154-x] [DOI:10.1007/s12088-011-0154-x] [PMID] [PMCID]
30. Shiningeni D., Chimwamurombe P., Shilangale R., Misihairabgwi J. (2019). Prevalence of pathogenic bacteria in street vended ready-to-eat meats in Windhoek, Namibia. Meat Science. 148: 223-228. [DOI: 10.1016/j.meatsci.2018.05.014] [DOI:10.1016/j.meatsci.2018.05.014] [PMID]
31. Sospedra I., Rubert J., Soriano J.M., Mañes J. (2013). Survey of microbial quality of plant-based foods served in restaurants. Food Control. 30: 418-422. [DOI: 10.1016/j.foodcont.2012. 08.004] [DOI:10.1016/j.foodcont.2012.08.004]
32. Stackebrandt E., Goebel B.M. (1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. ‎International Journal of Systematic Bacteriology. 44: 846-849. [DOI: 10.1099/00207713-44-4-846] [DOI:10.1099/00207713-44-4-846]
33. Thung T.Y., Mahyudin N.A., Basri D.F., Wan Mohamed Radzi C.W., Nakaguchi Y., Nishibuchi M., Radu S. (2016). Prevalence and antibiotic resistance of Salmonella Enteritidis and Salmonella Typhimurium in raw chicken meat at retail markets in Malaysia. Poultry Science. 95:1888-1893. [DOI: 10.3382/ps/pew144] [DOI:10.3382/ps/pew144] [PMID]
34. Todd E.C.D., Notermans S. (2011). Surveillance of listeriosis and its causative pathogen, Listeria monocytogenes. Food Control. 22: 1484-1490. [DOI: 10.1016/j.foodcont.2010.07.021] [DOI:10.1016/j.foodcont.2010.07.021]
35. Wang P., Hu A., Fan X., Zhao X., Ge Y., Chen Y. (2019). Bacterial communities in prepared foods available at supermarkets in Beijing, China. Food Research International. 120: 668-678. [DOI: 10.1016/j.foodres.2018.11.024] [DOI:10.1016/j.foodres.2018.11.024] [PMID]
36. World Health Organization (WHO). (2018). Listeriosis-South Africa. Disease outbreak news. World Health Organization, Geneva.
37. Yuan Y., Gao M. (2015). Genomic analysis of a ginger pathogen Bacillus pumilus providing the understanding to the pathogenesis and the novel control strategy. Scientific Reports. 5: 10259. [DOI: 10.1038/srep10259] [DOI:10.1038/srep10259] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb