Volume 7, Issue 3 (September 2020)                   J. Food Qual. Hazards Control 2020, 7(3): 157-161 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Lasram S, Hamdi Z, Ghorbel A. Occurrence and Exposure Assessment of Aflatoxin B1 and Ochratoxin A in Pearl Millet (Pennisetum glaucum L.) from Tunisia. J. Food Qual. Hazards Control. 2020; 7 (3) :157-161
URL: http://jfqhc.ssu.ac.ir/article-1-719-en.html
Laboratory of Molecular Physiology of Plants, Borj-Cedria Biotechnology Center. BP. 901 Hammam-Lif, 2050 Tunisia , salma.lasram.cbbc@gmail.com
Abstract:   (159 Views)
Background: Ochratoxin A (OTA) and Aflatoxin B1 (AFB1) are toxic secondary  metabolites produced by certain mold species. In this primarily survey, we examined the OTA and AFB1 contamination of pearl millet grains distributed in Tunisia.
Methods: Twenty-five pearl millet (Pennisetum glaucum L.) samples from different regions of Tunisia were analyzed by High Performance Liquid Chromatography coupled with fluorescence detector in order to evaluate the contamination with of AFB1 and OTA. Statistical tests were performed with XLSTAT 2018.
Results: AFB1 and OTA were detected in 32 and 28% millet samples, respectively. Mean amounts of these mycotoxins in the contaminated samples were of 24.54±17.54 µg/kg for OTA and 22.72±23.09 µg/kg for AFB1. Approximately, 28 and 24% of analyzed samples were found above the European Union limits for AFB1 and OTA, respectively. The estimated daily intake of OTA and AFB1 were 3.76 and 3.89 ng/kg b.w. per day, respectively. No significantly (p>0.05) difference in OTA and AFB1 contamination rate was found between samples taken from different regions.
Conclusion: Consumption of millet in Tunisia might be an important contributing factor to the risk of dietary exposure to OTA and AFB1.

DOI: 10.18502/jfqhc.7.3.4148
Full-Text [PDF 352 kb]   (69 Downloads)    
Type of Study: Short communication | Subject: Special
Received: 20/06/01 | Accepted: 20/07/28 | Published: 20/09/22

References
1. Amézqueta S., González-Peñas E., Murillo-Arbizu M., De Cerain A.L. (2009). Ochratoxin A decontamination: a review. Food Control. 20: 326-333. [DOI: 10.1016/j.foodcont.2008.05.017] [DOI:10.1016/j.foodcont.2008.05.017]
2. Ayalew A., Fehrmann H., Lepschy J., Beck R., Abate D. (2006). Natural occurrence of myctoxins in staple cereals from Ethiopia. Mycopathologia. 162: 57-63. [DOI: 10.1007/s11046-006-0027-8] [DOI:10.1007/s11046-006-0027-8] [PMID]
3. Ben Romdhane M., Riahi L., Bouamama B., Houissa H., Ghorbel A., Zoghlami N. (2019). Conservation priorities for endangered coastal North African Pennisetum glaucum L. landrace populations as inferred from phylogenetic considerations and population structure analysis. Heredity. 122: 219-232. [DOI: 10.1038/s41437-018-0091-0] [DOI:10.1038/s41437-018-0091-0] [PMID] [PMCID]
4. Bui-Klimke T.R., Wu F. (2015). Ochratoxin A and human health risk: a review of the evidence. Critical Reviews in Food Science and Nutrition. 55: 1860-1869. [DOI: 0.1080/ 10408398.2012.724480] [DOI:10.1080/10408398.2012.724480] [PMID] [PMCID]
5. Chala A., Taye W., Ayalew A., Krska R., Sulyok M., Logrieco A. (2014). Multimycotoxin analysis of sorghum (Sorghum bicolor L. Moench) and finger millet (Eleusine coracana L. Garten) from Ethiopia. Food Control. 45: 29-35. [DOI: 10.1016/j.foodcont.2014.04.018] [DOI:10.1016/j.foodcont.2014.04.018]
6. Chintapalli R., Wilson J.P., Little C.R. (2006). Using fungal isolation rates from pearl millet caryopses to estimate grain mold resistance. International Sorghum and Millets Newsletter. 47: 146-148.
7. Echodu R., Malinga G.M., Kaducu J.M., Ovuga E., Haesaert G. (2019). Prevalence of aflatoxin, ochratoxin and deoxynivalenol in cereal grains in northern Uganda: implication for food safety and health. Toxicological Reports. 6: 1012-1017. [DOI: 10.1016/j.toxrep.2019.09.002] [DOI:10.1016/j.toxrep.2019.09.002] [PMID] [PMCID]
8. European Commission. (2002). Commission decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Official Journal of the European Commission. L221: 8-36.
9. Ezekiel C.N., Sulyok M., Warth B., Krska R. (2012). Multi-microbial metabolites in fonio millet (acha) and sesame seeds in Plateau State, Nigeria. European Food Research and Technology. 235: 285-293. [DOI: 10.1007/s00217-012-1755-2] [DOI:10.1007/s00217-012-1755-2]
10. Jurjevic Z., Wilson J.P., Wilson D.M., Casper H.H. (2007). Changes in fungi and mycotoxins in pearl millet under controlled storage conditions. Mycopathologia. 164: 229-239. [DOI: 10.1007/s11046-007-9042-7] [DOI:10.1007/s11046-007-9042-7] [PMID]
11. Khaldi R., Saaidia B. (2016). Analysis of the cereal sector in Tunisia and identification of the main points of dysfunction at the origin of the losses. URL: http://www.onagri.nat.tn/uploads/ Etudes/RapportIVF.pdf
12. Kilonzo R.M., Imungi J.K., Muiru W.M., Lamuka P.O., Kamau Njage P.M.K. (2014). Household dietary exposure to aflatoxins from maize and maize products in Kenya. Food additives and contaminants: Part A. 31: 2055-2062. [DOI: 10.1080/19440049.2014.976595] [DOI:10.1080/19440049.2014.976595] [PMID]
13. Kortei N.K., Agyekum A.A., Akuamoa F., Baffour V.K., Alidu H.W. (2019). Risk assessment and exposure to levels of naturally occurring aflatoxins in some packaged cereals and cereal based foods consumed in Accra, Ghana. Toxicology Reports. 6: 34-41. [DOI: 10.1016/j.toxrep.2018.11.012] [DOI:10.1016/j.toxrep.2018.11.012] [PMID] [PMCID]
14. Loumerem M., Van Damme P., Reheul D., Behaeghe T. (2008). Collection and evaluation of pearl millet (Pennisetum glaucum) germplasm from the arid regions of Tunisia. Genetic Resources and Crop Evolution. 55: 1017-1028. [DOI: 10.1016/j.foodcont.2011.10.006] [DOI:10.1016/j.foodcont.2011.10.006]
15. Manwaring H.R., Bligh H.F.J., Yadav R. (2016). The challenges and opportunities associated with biofortification of pearl millet (Pennisetum glaucum) with elevated levels of grain iron and zinc. Frontiers in Plant Science. 7: 1944. [DOI: 10.3389/fpls.2016.01944] [DOI:10.3389/fpls.2016.01944]
16. Marchese S., Polo A., Ariano A., Velotto S., Costantini S., Severino L. (2018). Aflatoxin B1 and M1: biological properties and their involvement in cancer development. Toxins. 10: 214. [DOI: 10.3390/toxins10060214] [DOI:10.3390/toxins10060214] [PMID] [PMCID]
17. McBenedict B., Chimwamurombe P., Kwembeya E., Maggs-Kölling G. (2016). Genetic diversity of Namibian Pennisetum glaucum (L.) R. BR. (pearl millet) landraces analyzed by SSR and morphological markers. The Science World Journal. [DOI: 10.1155/ 2016/1439739] [DOI:10.1155/2016/1439739] [PMID] [PMCID]
18. Raghavender C.R., Reddy B.N., Shobharani G. (2007). Aflatoxin contamination of pearl millet during field and storage conditions with reference to stage of grain maturation and insect damage. Mycotoxin Researchs. 23: 199-209. [DOI: 10.1007/BF02946048] [DOI:10.1007/BF02946048] [PMID]
19. Rushing B.R., Selim M.I. (2019). Aflatoxin B1: a review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food and Chemical Toxicology. 124: 81-100. [DOI: 10.1016/j.fct.2018.11.047] [DOI:10.1016/j.fct.2018.11.047] [PMID]
20. Sirma A.J., Senerwa D.M., Grace D., Makita K., Mtimet N., Kang'ethe E.K., Lindahl J.F. (2016). Aflatoxin B1 occurrence in millet, sorghum and maize from four agro-ecological zones in Kenya. African Journal of Food, Agriculture, Nutrition and Development. 16: 10991-11003. [DOI: 10.18697/ajfand.75. ILRI03] [DOI:10.18697/ajfand.75]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2020 All Rights Reserved | Journal of food quality and hazards control

Designed & Developed by : Yektaweb