Volume 8, Issue 1 (March 2021)                   J. Food Qual. Hazards Control 2021, 8(1): 45-49 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ayubi Z, Jafari A, Ayatollahi-Mousavi S, Jafari H, Panddeh M. Using Comet Assay for Genotoxic Evaluation of Zataria multiflora Boiss., An Iranian Endemic Plant. J. Food Qual. Hazards Control. 2021; 8 (1) :45-49
URL: http://jfqhc.ssu.ac.ir/article-1-781-en.html
Department of Medical Parasitology and Mycology, Medical School, Shahid Sadougi University of Medical Sciences, Yazd, Iran , a.jafari45@ssu.ac.ir
Abstract:   (154 Views)
Background: Zataria multiflora Boiss. (Avishan-e Shirazi), as an Iranian endemic plant, belongs to the Lamiaceae family and may be used as a food preservative. This study aimed to detect potential genotoxic effects of Z. multiflora extract. 
Methods: Hydro-alcoholic extract of Z. multiflora was prepared. Human B lymphocytes were treated with 1% extract within 3 and 24 h. Sterile Phosphate Buffered Saline (PBS) and cisplatin were used as negative and positive controls, respectively. DNA damage profiles were examined using comet assay (Single Cell Gel Electrophoresis). Data were statistically analyzed by SPSS software v. 21.
Results: No statistically significant (p=0.071) DNA damage was observed in B lymphocytes treated with either Z. multiflora extract or PBS after 3 and 24 h. However, there was a statistically significant difference (p=0.0001) between DNA damage in B lymphocytes that treated with cisplatin and Z. multiflora after 3 and 24 h.
Conclusion: The comet assay used in the current study showed that Z. multiflora had no genotoxic effect.

DOI: 10.18502/jfqhc.8.1.5463
Full-Text [PDF 386 kb]   (87 Downloads)    
Type of Study: Short communication | Subject: Special
Received: 20/10/04 | Accepted: 20/12/26 | Published: 21/03/13

References
1. Aliakbarlu J., Khalili Sadaghiani S. (2015). Effect of avishane shirazi (Zataria multiflora) and clove (Syzygium aromati-cum) essential oils on microbiological, chemical and sen-sory properties of ground sheep meat during refrigerated storage. Journal of Food Quality. 38: 240-247. [DOI: 10.1111/jfq.12147] [DOI:10.1111/jfq.12147]
2. Arora S., Brits E., Kaur S., Kaur K., Sohi R.S., Kumar S., Ver-schaeve L. (2005). Evaluation of genotoxicity of medici-nal plant extracts by the comet and VITOTOX tests. Journal of Environmental Pathology, Toxicology and Oncology. 24:193-200. [DOI: 10.1615/JEnvPathToxOncol.v24.i3.50] [DOI:10.1615/JEnvPathToxOncol.v24.i3.50] [PMID]
3. De Grandmont M.J., Racine C., Roy A., Lemieux R., Neron S. (2003). Intravenous immunoglobulins induce the in vitro differentiation of human B lymphocytes and the secretion of IgG. Blood. 101: 3065-3073. [DOI: 10.1182/blood-2002-06-1684] [DOI:10.1182/blood-2002-06-1684] [PMID]
4. Dhawan A., Bajpayee M., Parmar D. (2009). Comet assay: a reliable tool for the assessment of DNA damage in differ-ent models. Cell Biology and Toxicology. 25: 5-32. [DOI: 10.1007/s10565-008-9072-z] [DOI:10.1007/s10565-008-9072-z] [PMID]
5. Fazeli M.R., Amin G., Ahmadian Attari M.M., Ashtiani H., Jamalifar H., Samadi N. (2007). Antimicrobial activities of Iranian sumac and avishan-e shirazi (Zataria multiflo-ra) against some food-borne bacteria. Food Control. 18: 646-649. [DOI: 10.1016/j.foodcont.2006.03.002] [DOI:10.1016/j.foodcont.2006.03.002]
6. Gyori B.M., Venkatachalam G., Thiagarajan P.S., Hsu D., Clement M.V. (2014). Open comet: an automated tool for comet assay image analysis. Redox Biology. 2: 457-465. [DOI: 10.1016/j. redox.2013.12.020] [DOI:10.1016/j.redox.2013.12.020] [PMID] [PMCID]
7. Hanna J., Markoulaki S., Schorderet P., Carey B.W., Beard C., Wernig M., Creyghton M.P., Steine E.J., Cassady J.P., Foreman R., Lengner C.J., Dausman J.A., et al. (2008). Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell. 133: 250-264. [DOI: 10.1016/j.cell.2008.03.028] [DOI:10.1016/j.cell.2008.03.028] [PMID] [PMCID]
8. Horvathova E., Sramkova M., Sramkova J., Labaj D., Slame-nova D. (2006). Study of cytotoxic, genotoxic and DNA-protective effects of selected plant essential oils on human cells cultured in vitro. Neuro Endocrinology Letters. 2: 44-47.
9. Hosseinimehr S.J., Ahmadashrafi S., Naghshvar F., Ahmadi A.H., Ehasnalavi S., Tanha M. (2010). Chemoprotective effects of Zataria multiflora against genotoxicity induced by cyclophosphamide in mice bone marrow cells. Inte-grative Cancer Therapies. 9: 219-223. [DOI: 10.1177/1534735409360361] [DOI:10.1177/1534735409360361] [PMID]
10. Hosseinimehr S.J., Mahmoudzadeh A., Ahmadi A.H., Ashrafi S.A., Shafaghati N., Hedayati N. (2011). The radioprotec-tive effect of Zataria multiflora against genotoxicity in-duced by γ irradiation in human blood lymphocytes. Cancer Bio-therapy and Radiopharmaceuticals. 26: 325-329. [DOI: 10.1089/cbr.2010.0896] [DOI:10.1089/cbr.2010.0896] [PMID]
11. Liu W., Zhu L.S., Wang J., Wang J.H., Xie H., Song Y. (2009). Assessment of the genotoxicity of endosulfan in earth-worm and white clover plants using the comet assay. Ar-chives of Environmental Contamination and Toxicology. 56: 742-746. [DOI: 10.1007/ s00244-009-9309-8] [DOI:10.1007/s00244-009-9309-8]
12. Nakhaee Moghadam M., Jamshidi A., Fazly Bazzaz B.S., Az-izzadeh M., Movaffagh J. (2020). Saccharomyces cere-visiae as a delivery system of Zataria multiflora Boiss. essential oil as a natural preservative for food applica-tions. Journal of the Science of Food and Agriculture. 39: 233-242. [DOI: 10.1002/jsfa.10818] [DOI:10.1002/jsfa.10818] [PMID]
13. Pandeh M., Fathi S., Zare-Sakhvidi M.J., Zavar reza J., Sadeghian L. (2017). Oxidative stress and early DNA damage in workers exposed to iron-rich metal fumes. Environmental Science Pollution Research. 24: 9645-9650. [DOI: 10.1007/s11356-017-8657-6] [DOI:10.1007/s11356-017-8657-6] [PMID]
14. Saei-Dehkordi S.S., Tajik H., Moradi M., Khalighi-Sigaroodi F. (2010). Chemical composition of essential oils in Zataria multiflora Boiss. from different parts of Iran and their radical scavenging and antimicrobial activity. Food and Chemical Toxicology. 48: 1562-1567. [DOI: 10.1016/j.fct.2010.03.025] [DOI:10.1016/j.fct.2010.03.025] [PMID]
15. Sajed H., sahebkar A., Iranshahi M. (2013). Zataria multiflora Boiss. (Shirazi thyme)-An ancient condiment with mod-ern pharmaceutical uses. Journal of Ethnopharmacology. 145: 686-698. [DOI: 10.1016/j.jep.2012.12.018] [DOI:10.1016/j.jep.2012.12.018] [PMID]
16. Sharififar F., Moshafi M.H., Mansouri S.H., Khodashenas M., Khoshnoodi M. (2007). In vitro evaluation of antibacteri-al and antioxidant activities of the essential oil and meth-anol extract of endemic Zataria multiflora Boiss. Food Control. 18: 800-805. [DOI: 10.1016/j.foodcont.2006.04.002] [DOI:10.1016/j.foodcont.2006.04.002]
17. Su L., Yin J.J., Charles D., Zhou K., Moore J., Yu L. (2007). Total phenolic contents, chelating capacities, and radical-scavenging properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf. Food Chemistry. 100: 990-997. [DOI: 10.1016/j.foodchem.2005.10.058] [DOI:10.1016/j.foodchem.2005.10.058]
18. Taylor J.L.S., Elgorashi E.E., Maes A., Van Gorp U., DeKimpe N., Van Staden J., Verschaeve L. (2003). In-vestigating the safety of plants used in South African tra-ditional medicine: testing for genotoxicity in the micronu-cleus and alkaline comet assays. Environmental and Molecular Mutagenesis. 42: 144-154. [DOI: 10.1002/em.10184] [DOI:10.1002/em.10184] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2021 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb