Volume 8, Issue 1 (March 2021)                   J. Food Qual. Hazards Control 2021, 8(1): 13-20 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Cirlincione F, Francesca N, Settanni L, Donnini D, Venturella G, Gargano M. Microbial Safety of Black Summer Truffle Collected from Sicily and Umbria Regions, Italy. J. Food Qual. Hazards Control. 2021; 8 (1) :13-20
URL: http://jfqhc.ssu.ac.ir/article-1-789-en.html
Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy , nicola.francesca@unipa.it
Abstract:   (207 Views)
Background: Tuber aestivum Vittad., known as black summer truffle, represents high-value food especially used as garnishment in nouvelle cuisine. The aim of this study was to investigate on the viable microbial populations associated with T. aestivum ascomata collected in different sites of Sicily and one locality of Umbria (Italy).
Methods: The ripe ascomata of black summer truffles were collected from Central Italy. Cell densities of spoilage bacteria, fecal indicators, potential pathogens, yeasts, and molds were analyzed. Statistical analysis was conducted with XLSTAT software.
Results: The microbiological counts of truffles ranged between 6.00 and 9.63 log Colony Forming Unit (CFU)/g for total mesophilic count and between 6.18 and 8.55 log CFU/g for total psychrotrophic count; pseudomonads were in the range 6.98-9.28 log CFU/g. Listeria spp. and coagulase-positive streptococci detected in no samples. Coagulase-negative streptococci were found in some samples with 2.11-4.76 log CFU/g levels. Yeasts and filamentous fungi were detected at consistent levels of 3.60-7.81 log CFU/g. Significant differences (p<0.01) were found between samples and also for all microbial groups.
Conclusion: This study evidenced that the common brushing procedure applied for preparation of truffles is not sufficient to eliminate microbial risks for consumers. The application of an efficient decontamination treatment is strongly suggested before consumption of fresh truffles.

DOI: 10.18502/jfqhc.8.1.5458
Full-Text [PDF 913 kb]   (121 Downloads)    
Type of Study: Original article | Subject: Special
Received: 20/06/17 | Accepted: 20/10/27 | Published: 21/03/13

References
1. Alfonzo A., Gaglio R., Miceli A., Francesca N., Di Gerlando R., Moschetti G., Settanni L. (2018). Shelf life evaluation of fresh-cut red chicory subjected to different minimal processes. Food Microbiology. 73: 298-304. [DOI: 10.1016/j. fm.2018.02.008] [DOI:10.1016/j.fm.2018.02.008] [PMID]
2. Barbieri E., Bertini L., Rossi I., Ceccaroli P., Saltarelli R., Guidi C., Zambonelli A., Stocchi V. (2005). New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii Vittad. FEMS Microbiology Letters. 247: 23-35. [DOI: 10.1016/j.femsle.2005.04.027] [DOI:10.1016/j.femsle.2005.04.027] [PMID]
3. Barbieri E., Guidi C., Bertaux J., Frey-Klett P., Garbaye J., Ceccaroli P., Saltarelli R., Zambonelli A., Stocchi V. (2007). Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environmental Microbiology. 9: 2234-2246. [DOI: 10.1111/j.1462-2920. 2007.01338.x] [DOI:10.1111/j.1462-2920.2007.01338.x] [PMID]
4. Bedini S., Bagnoli G., Sbrana C., Leporini C., Tola E., Dunne C., Filippi C., D'Andrea F., O'Gara F., Nuti M.P. (1999). Pseudomonas isolated from within fruit bodies of Tuber borchii are capable of producing biological control or phytostimulatory compounds in pure culture. Symbiosis. 26: 223-236.
5. Buck J.W., Walcott R.R., Beuchat L.R. (2003). Recent trends in microbiological safety of fruits and vegetables. Plant Health Progress. 4. [DOI: 10.1094/PHP-2003-0121-01-RV] [DOI:10.1094/PHP-2003-0121-01-RV]
6. Buscot F., Munch J.C., Charcosset J.Y., Gardes M., Nehls U., Hampp R. (2000). Recent advances in exploring physiology and biodiversity of ectomycorrhizas highlight the functioning of these symbioses in ecosystems. FEMS Microbiology Reviews. 24: 601-614. [DOI: 10.1111/j.1574-6976.2000. tb00561.x] [DOI:10.1111/j.1574-6976.2000.tb00561.x] [PMID]
7. Buzzini P., Gasparetti C., Turchetti B., Cramarossa M.R., Vaughan-Martini A., Martini A., Pagnoni U.M., Forti L. (2005). Production of volatile organic compounds (VOCs) by yeasts isolated from the ascocarps of black (Tuber melanosporum Vitt.) and white (Tuber magnatum Pico) truffles. Archives of Microbiology. 184: 187-193. [DOI: 10.1007/s00203-005-0043-y] [DOI:10.1007/s00203-005-0043-y] [PMID]
8. Calvo R., Prestifilippo M., Venturella G. (2020). Truffle gathering and trade in the Monti Sicani Regional Park (Sicily, Italy), a new perspective for the local economy and for employment in economically depressed areas. Plant Biosystems. 1-9. [DOI: 10.1080/11263504.2020.1845843] [DOI:10.1080/11263504.2020.1845843]
9. Comi G., Reale A., Giusto C., Tremonte P., Iacumin L., Succi M., Manzano M., Di Renzo T., Coppola R., Sorrentino E. (2010). Shelf-life of black truffle (Tuber aestivum Vitt.) stored in different conditions. Industrie Alimentari. 49: 28-34.
10. Francesca N., Cirlincione F., Barbaccia P., Ciminata A., Gaglio R., Moschetti G., Settanni L. (2018). Survey of antibiotic resistance of Pseudomonas isolated from fresh cut red chicory (Cichorium intybus L., Asteraceae). Medicine Papers. 4: 43-47.
11. Francesca N., Guarcello R., Craparo V., Moschetti G., Settanni L., Gaglio R. (2019). Microbial ecology of retail ready-to-eat escarole and red chicory sold in Palermo City, Italy. Journal of Food Quality and Hazards Control. 6: 45-52. [DOI: 10.18502/jfqhc.6.2.954] [DOI:10.18502/jfqhc.6.2.954]
12. Gaglio R., Saitta A., Cruciata M., La Rosa A., Barbaccia P., Moschetti G., Settanni L. (2019). Microbiological characteristics of wild edible mushrooms and effect of temperature during storage of Morchella conica. Journal of Food Quality and Hazards Control. 6: 2-7. [DOI: 10.18502/jfqhc.6.1.452] [DOI:10.18502/jfqhc.6.1.452]
13. Jiang H., Miraglia D., Ranucci D., Donnini D., Roila R., Branciari R., Li C. (2018). High microbial loads found in minimally-processed sliced mushrooms from Italian market. Italian Journal of Food Safety. 7: 7000. [DOI: 10.4081/ijfs.2018. 7000] [DOI:10.4081/ijfs.2018.7000] [PMID] [PMCID]
14. Kim C., Nartea T.J., Pao S., Li H., Jordan K.L., Xu Y., Stein R.A., Sismour E.N. (2016). Evaluation of microbial loads on dried and fresh shiitake mushrooms (Lentinula edodes) as obtained from internet and local retail markets, respectively. Food Safety. 2016005. [DOI: 10.14252/foodsafetyfscj.2016005] [DOI:10.14252/foodsafetyfscj.2016005] [PMID] [PMCID]
15. Martin F., Duplessis S., Ditengou F., Lagrange H., Voiblet C., Lapeyrie F. (2001). Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytologist. 151: 145-154. [DOI: 10.1046/j.1469-8137. 2001.00169.x] [DOI:10.1046/j.1469-8137.2001.00169.x]
16. Miceli A., Gaglio R., Francesca N., Ciminata A., Moschetti G., Settanni L. (2019). Evolution of shelf life parameters of ready-to-eat escarole (Cichorium endivia var. latifolium) subjected to different cutting operations. Scientia Horticulturae. 247: 175-183. [DOI: 10.1016/j.scienta.2018.12.023] [DOI:10.1016/j.scienta.2018.12.023]
17. Nazzaro F., Fratianni F., Picariello G., Coppola R., Reale A., Di Luccia A. (2007). Evaluation of gamma rays influence on some biochemical and microbiological aspects in black truffles. Food Chemistry. 103: 344-354. [DOI: 10.1016/j. foodchem.2006.07.067] [DOI:10.1016/j.foodchem.2006.07.067]
18. Pacioni G., Leonardi M., Aimola P., Ragnelli A. M., Rubini A., Paolocci F. (2007). Isolation and characterization of some mycelia inhabiting Tuber ascomata. Mycological Research. 111: 1450-1460. [DOI: 10.1016/j.mycres.2007.08.016] [DOI:10.1016/j.mycres.2007.08.016] [PMID]
19. Read D.J. (1991). Mycorrhizas in ecosystems. Experientia. 47: 376-391. [DOI: 10.1007/BF01972080] [DOI:10.1007/BF01972080]
20. Reale A., Sorrentino E., Iacumin L., Tremonte P., Manzano M., Maiuro L., Comi G., Coppola R., Succi M. (2009). Irradiation treatments to improve the shelf life of fresh black truffles (truffles preservation by gamma‐rays). Journal of Food Science. 74: M196-M200. [DOI: 10.1111/j.1750-3841.2009. 01142.x] [DOI:10.1111/j.1750-3841.2009.01142.x] [PMID]
21. Rivera C.S., Blanco D., Marco P., Oria R., Venturini M.E. (2011). Effects of electron-beam irradiation on the shelf life, microbial populations and sensory characteristics of summer truffles (Tuber aestivum) packaged under modified atmospheres. Food Microbiology. 28: 141-148. [DOI: 10.1016 /j.fm.2010.09.008] [DOI:10.1016/j.fm.2010.09.008]
22. Rivera C.S., Blanco D., Oria R., Venturini M.E. (2010). Diversity of culturable microorganisms and occurrence of Listeria monocytogenes and Salmonella spp. in Tuber aestivum and Tuber melanosporum ascocarps. Food Microbiology. 27: 286-293. [DOI: 10.1016/j.fm.2009.11.001] [DOI:10.1016/j.fm.2009.11.001] [PMID]
23. Sbrana C., Agnolucci M., Bedini S., Lepera A., Toffanin A., Giovannetti M., Nuti M.P. (2002). Diversity of culturable bacterial populations associated to Tuber borchii ectomycorrhizas and their activity on T. borchii mycelial growth. FEMS Microbiology Letters. 211: 195-201. [DOI: 10.1111/j.1574-6968.2002.tb11224.x] [DOI:10.1111/j.1574-6968.2002.tb11224.x] [PMID]
24. Sorrentino E., Reale A., Tremonte P., Maiuro L., Succi M., Tipaldi L., Di Renzo T., Pannella G., Coppola R. (2013). Lactobacillus plantarum 29 inhibits Penicillium spp. involved in the spoilage of black truffles (Tuber aestivum). Journal of Food Science. 78: M1188-M1194. [DOI: 10.1111/1750-3841. 12171] [DOI:10.1111/1750-3841.12171] [PMID]
25. Sorrentino E., Succi M., Tipaldi L., Pannella G., Maiuro L., Sturchio M., Coppola R., Tremonte P. (2018). Antimicrobial activity of gallic acid against food-related Pseudomonas strains and its use as biocontrol tool to improve the shelf life of fresh black truffles. International Journal of Food Microbiology. 266: 183-189. [DOI: 10.1016/j.ijfoodmicro. 2017.11.026] [DOI:10.1016/j.ijfoodmicro.2017.11.026] [PMID]
26. Uzal F.A., Navarro M.A., Li J., Freedman J.C., Shrestha A., McClane B.A. (2018). Comparative pathogenesis of enteric clostridial infections in humans and animals. Anaerobe. 53: 11-20. [DOI: 10.1016/j.anaerobe.2018.06.002] [DOI:10.1016/j.anaerobe.2018.06.002] [PMID] [PMCID]
27. Venturini M.E., Reyes J.E., Rivera C.S., Oria R., Blanco D. (2011). Microbiological quality and safety of fresh cultivated and wild mushrooms commercialized in Spain. Food Microbiology. 28: 1492-1498. [DOI: 10.1016/j.fm.2011.08.007] [DOI:10.1016/j.fm.2011.08.007] [PMID]
28. Venturella G., Altobelli E., Bernicchia A., Di Piazza S., Donnini D., Gargano M. L., Gorjón S. P., Granito V. M., Lantieri A., Lunghini D., Montemartini A., Padovan F., et al. (2011). Fungal biodiversity and in situ conservation in Italy. Plant Biosystems. 145: 950-957. [DOI: 10.1080/11263504.2011. 633115] [DOI:10.1080/11263504.2011.633115]
29. Zambonelli A., Donnini D., Rana G.L., Fascetti S., Benucci G.M.N., Iotti M., Morte A., Khabar L., Bawadekji A., Piattoni F., Compagno R., Venturella G. (2014). Hypogeous fungi in Mediterranean maquis, arid and semi-arid forests. Plant Biosystems. 148: 392-401. [DOI: 10.1080/11263504.2013. 877537] [DOI:10.1080/11263504.2013.877537]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2021 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb