Volume 8, Issue 1 (March 2021)                   J. Food Qual. Hazards Control 2021, 8(1): 2-12 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Strateva M, Penchev G, Stratev D. Influence of Freezing on Muscles of Rainbow Trout (Oncorhynchus mykiss): A Histological and Microbiological Study. J. Food Qual. Hazards Control. 2021; 8 (1) :2-12
URL: http://jfqhc.ssu.ac.ir/article-1-822-en.html
Department of Food Hygiene and Control, Veterinary Legislation and Management, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria , deyan.stratev@trakia-uni.bg
Abstract:   (222 Views)
Background: Freezing is a common and ancient method for preservation of foods which is applicable both under household and industrial conditions. The objective of the study was to establish histological and microbiological changes in dorsal and abdominal muscles of rainbow trout (Oncorhynchus mykiss) after freezing once and twice.
Methods: Forty-five fresh rainbow trout specimens were distributed into three groups of 15 fish each. The first group was subjected to histological and microbiological analysis immediately after delivery at the laboratory. The second fish group was frozen at -18 °C for 15 days, while the third group of fish was frozen at -18 °C for 15 days, thawed and frozen again at -18 °C for 15 days. Data were analyzed using GraphPad InStat 3 software.
Results: After freezing once, muscle fibers with intracellular void spaces were observed and retained stable peripheral boundary. In some muscle fibers, the endomysium boundaries were visible and with retained integrity. After freezing twice, damages and deformities were observed resulting in completely destructured muscle fibers. Large void spaces among the muscle fibers and bundles were greatly the result of shrinking and grouping of fibers and the laceration of endomysium and perimysium internum. Total microbial count and Enterobacteriaceae count had no significant differences (p>0.05) between fresh, frozen once, and frozen twice trout.
Conclusion: Muscles of rainbow trout (O. mykiss) are histologically damaged to a greater extent after freezing twice and thawing. However, microbiological indicators had no change significantly after freezing once and twice.

DOI: 10.18502/jfqhc.8.1.5457
Full-Text [PDF 1893 kb]   (157 Downloads)    
Type of Study: Original article | Subject: Special
Received: 20/10/04 | Accepted: 20/12/23 | Published: 21/03/13

1. Akter N., Linkon K.M.R., Rahman M., Hossain S. (2020). A comparative study on the determination of biochemical changes of different species of fish during frozen storage. Letters in Applied NanoBioScience. 9: 1444-1450. [DOI: 10.33263/LIANBS93.14441450] [DOI:10.33263/LIANBS93.14441450]
2. Angane M., Gupta S., Fletcher G.C., Summers G., Hedderley D.I., Quek S.Y. (2020). Effect of air blast freezing and frozen storage on Escherichia coli survival, n-3 polyunsaturated fatty acid concentration and microstructure of Greenshell™ mussels. Food Control. 115: 107284. [DOI: 10.1016/ j.foodcont.2020.107284] [DOI:10.1016/j.foodcont.2020.107284]
3. Ayala M.D., Albors O.L., Blanco A., Alcázar A.G., Abellán E., Zarzosa G.R., Gil F. (2005). Structural and ultrastructural changes on muscle tissue of sea bass, Dicentrarchus labrax L., after cooking and freezing. Aquaculture. 250: 215-231. [DOI: 10.1016/j.aquaculture.2005.04.057] [DOI:10.1016/j.aquaculture.2005.04.057]
4. Bahuaud D., Mørkøre T., Langsrud Ø., Sinnes K., Veiseth E., Ofstad R., Thomassen M.S. (2008). Effects of -1.5 °C super-chilling on quality of Atlantic salmon (Salmo salar) pre-rigor fillets: cathepsin activity, muscle histology, texture and liquid leakage. Food Chemistry. 111: 329-339. [DOI: 10.1016/j. foodchem.2008.03.075] [DOI:10.1016/j.foodchem.2008.03.075] [PMID]
5. Chakma S., Saha S., Hossain N., Rahman A., Akter M., Hoque S., Ullah R., Mali S.k., Al Shahriar. (2020). Effect of frozen storage on the biochemical, microbial and sensory attributes of Skipjack Tuna (Katsuwonus pelamis) fish loins. Journal of Applied Biology and Biotechnology. 8: 58-64. [DOI: 10.7324/JABB.2020.80409] [DOI:10.7324/JABB.2020.80409]
6. Dalvi-Isfahan M., Jha P.K., Tavakoli J., Daraei-Garmakhany A., Xanthakis E., Le-Bail A. (2019). Review on identification, underlying mechanisms and evaluation of freezing damage. Journal of Food Engineering. 255: 50-60. [DOI: 10.1016/ j.jfoodeng.2019.03.011] [DOI:10.1016/j.jfoodeng.2019.03.011]
7. Díaz-Tenorio L.M., García-Carreño F.L., Pacheco-Aguilar R. (2007). Comparison of freezing and thawing treatments on muscle properties of whiteleg shrimp (Litopenaeus vannamei). Journal of Food Biochemistry. 31: 563-576. [DOI: 10.1111/j.1745-4514.2007.00130.x] [DOI:10.1111/j.1745-4514.2007.00130.x]
8. Hafezparast-Moadab N., Hamdami N., Dalvi-Isfahan M., Farahnaky A. (2018). Effects of radiofrequency-assisted freezing on microstructure and quality of rainbow trout (Oncorhynchus mykiss) fillet. Innovative Food Science and Emerging Technologies. 47: 81-87. [DOI: 10.1016/j.ifset.2017.12.012] [DOI:10.1016/j.ifset.2017.12.012]
9. ICMSF (International Commission on Microbiological Specification for Foods). (1986). Microorganisms in foods. 2. Sampling for microbiological analysis: principles and specific applications. 2nd edition. Buffalo, NY: University of Toronto Press.
10. Jasra S.K., Jasra P.K., Talesara C.L. (2001). Myofibrillar protein degradation of carp (Labeo rohita (Hamilton)) muscle after post-mortem unfrozen and frozen storage. Journal of the Science of Food and Agriculture. 81: 519-524. [DOI: 10.1002/ jsfa.841] [DOI:10.1002/jsfa.841]
11. Jiang Q., Nakazawa N., Hu Y., Osako K., Okazaki E. (2019). Changes in quality properties and tissue histology of lightly salted tuna meat subjected to multiple freeze-thaw cycles. Food Chemistry. 293: 178-186. [DOI: 10.1016/j. foodchem.2019.04.091] [DOI:10.1016/j.foodchem.2019.04.091] [PMID]
12. Kaale L.D., Eikevik T.M. (2013). A histological study of the microstructure sizes of the red and white muscles of Atlantic salmon (Salmo salar) fillets during superchilling process and storage. Journal of Food Engineering. 114: 242-248. [DOI: 10.1016/j.jfoodeng.2012.08.003] [DOI:10.1016/j.jfoodeng.2012.08.003]
13. Kolbe E., Kramer D. (2007). Planning for seafood freezing. Fairbanks, Alaska: Alaska Sea Grant College Program, University of Alaska Fairbanks. [DOI:10.4027/psf.2007]
14. Latorre R., Sadeghinezhad J., Hajimohammadi B., Izadi F., Sheibani M.T. (2015). Application of morphological method for detection of unauthorized tissues in processed meat products. Journal of Food Quality and Hazards Control. 2: 71-74.
15. Liu Q., Kong B., Han J., Chen Q., He X. (2014). Effects of superchilling and cryoprotectants on the quality of common carp (Cyprinus carpio) surimi: microbial growth, oxidation, and physiochemical properties. LWT-Food Science and Technology. 57: 165-171. [DOI: 10.1016/j.lwt.2014.01.008] [DOI:10.1016/j.lwt.2014.01.008]
16. Lu X., Zhang Y., Xu B., Zhu L., Luo X. (2020). Protein degradation and structure changes of beef muscle during superchilled storage. Meat Science. 168: 108180. [DOI: 10.1016/j.meatsci. 2020.108180] [DOI:10.1016/j.meatsci.2020.108180] [PMID]
17. Luan L., Wang L., Wu T., Chen S., Ding T., Hu Y. (2018). A study of ice crystal development in hairtail samples during different freezing processes by cryosectioning versus cryosubstitution method. International Journal of Refrigeration. 87: 39-46. [DOI: 10.1016/j.ijrefrig.2017.10.014] [DOI:10.1016/j.ijrefrig.2017.10.014]
18. Makri M. (2009). Biochemical and textural properties of frozen stored (-22 °C) gilthead seabream (Sparus aurata) fillets. African Journal of Biotechnology. 8: 1287-1299.
19. Okuda K., Kawauchi A., Yomogida K. (2020). Quality improvements to mackerel (Scomber japonicus) muscle tissue frozen using a rapid freezer with the weak oscillating magnetic fields. Cryobiology. 95: 130-137. [DOI: 10.1016/j.cryobiol. 2020.05.005] [DOI:10.1016/j.cryobiol.2020.05.005] [PMID]
20. Ottavian M., Fasolato L., Facco P., Barolo M. (2013). Foodstuff authentication from spectral data: toward a species-independent discrimination between fresh and frozen-thawed fish samples. Journal of Food Engineering. 119: 765-775. [DOI: 10.1016/j.jfoodeng.2013.07.005] [DOI:10.1016/j.jfoodeng.2013.07.005]
21. Paulsen P., Borgetti C., Schopf E., Smulders F.J.M. (2008). Enumeration of Enterobacteriaceae in various foods with a new automated most-probable-number method compared with petrifilm and international organization for standardization procedures. Journal of Food Protection. 71: 376-379. [DOI: 10.4315/0362-028X-71.2.376] [DOI:10.4315/0362-028X-71.2.376] [PMID]
22. Pavlov A., Dimitrov D., Penchev G., Georgiev L. (2008). Structural changes in common carp (Cyprinus carpio L.) fish meat during freezing. Bulgarian Journal of Veterinary Medicine. 11: 131-136.
23. Popelka P., Nagy J., Pipová M., Marcinčák S., Lenhardt Ľ. (2014). Comparison of chemical, microbiological and histological changes in fresh, frozen and double frozen rainbow trout (Oncorhynchus mykiss). Acta Veterinaria Brno. 83: 157-161. [DOI: 10.2754/avb201483020157] [DOI:10.2754/avb201483020157]
24. Shi L., Yin T., Xiong G., Ding A., Li X., Wu W., Qiao Y., Liao L., Wang J., Wang L. (2020). Microstructure and physicochemical properties: effect of pre-chilling and storage time on the quality of Channel catfish during frozen storage. LWT. 130: 109606. [DOI: 10.1016/j.lwt.2020.109606] [DOI:10.1016/j.lwt.2020.109606]
25. Sigurgisladottir S., Ingvarsdottir H., Torrissen O.J., Cardinal M., Hafsteinsson H. (2000). Effects of freezing/thawing on the microstructure and the texture of smoked Atlantic salmon (Salmo salar). Food Research International. 33: 857-865. [DOI: 10.1016/S0963-9969(00)00105-8] [DOI:10.1016/S0963-9969(00)00105-8]
26. Stratev D., Vashin I., Daskalov H. (2015). Microbiological status of fish products on retail markets in the Republic of Bulgaria. International Food Research Journal. 22: 64-69.
27. Taşkaya L., Çaklı S., Kışla D., Kılınç B. (2003). Quality changes of fish burger from rainbow trout during refrigerated storage. Journal of Fisheries and Aquatic Sciences. 20: 147-154.
28. Tinacci L., Armani A., Guidi A., Nucera D., Shvartzman D., Miragliotta V., Coli A., Giannessi E., Stornelli M.R., Fronte B., Di Iacovo F., Abramo F. (2018). Histological discrimination of fresh and frozen/thawed fish meat: European hake (Merluccius merluccius) as a possible model for white meat fish species. Food Control. 92: 154-161. [DOI: 10.1016/ j.foodcont.2018.04.056] [DOI:10.1016/j.foodcont.2018.04.056]
29. Tinacci L., Armani A., Scardino G., Guidi A., Nucera D., Miragliotta V., Abramo F. (2020). Selection of histological parameters for the development of an analytical method for discriminating fresh and frozen/thawed common octopus (Octopus vulgaris) and preventing frauds along the seafood chain. Food Analytical Methods. 13: 2111-2127. [DOI: 10.1007/s12161-020-01825-0] [DOI:10.1007/s12161-020-01825-0]
30. Venugopal V. (2005). Seafood processing: adding value through quick freezing, retortable packaging, and cook-chilling. CRC press, Taylor & Francis Group. [DOI:10.1201/9781420027396]

Add your comments about this article : Your username or Email:

© 2021 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb