1. Aworh M.K., Kwaga J., Okolocha E., Harden L., Hull D., Hen-driksen R.S., Thakur S. (2020). Extended-spectrum ß-lactamase-producing Escherichia coli among humans, chickens and poultry environments in Abuja, Nigeria. One Health Outlook. 2: 8. [DOI: 10.1186/s42522-020-00014-7] [
DOI:10.1186/s42522-020-00014-7] [
PMID] [
PMCID]
2. Ayeni F.A., Falgenhauer J., Schmiedel J., Schwengers O., Chakraborty T., Falgenhauer L. (2020). Detection of blaCTX-M-27-encoding Escherichia coli ST206 in Nigerian poultry stocks. Journal of Antimicrobial Chemotherapy. 75: 3070-3072. [DOI: 10.1093/jac/dkaa293] [
DOI:10.1093/jac/dkaa293] [
PMID]
3. Castanheira M., Simner P.J., Bradford P.A. (2021). Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC-Antimicrobial Resistance. 3: dlab092. [DOI: 10.1093/jacamr/dlab092] [
DOI:10.1093/jacamr/dlab092] [
PMID] [
PMCID]
4. Choi J.-K., Yoo J.-H. (2019). Increasing antimicrobial resistance of Escherichia coli makes antimicrobial stewardship more important. Journal of Korean Medical Science. 34: e236. [DOI: 10.3346/jkms.2019.34.e236] [
DOI:10.3346/jkms.2019.34.e236] [
PMID] [
PMCID]
5. Clausen P.T.L.C., Aarestrup F.M., Lund O. (2018). Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics. 19: 307. [DOI: 10.1186/s12859-018-2336-6] [
DOI:10.1186/s12859-018-2336-6] [
PMID] [
PMCID]
6. Clausen P.T.L.C., Zankari E., Aarestrup F.M., Lund O. (2016). Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data. Journal of Antimicrobial Chemotherapy. 71: 2484-2488. [DOI: 10.1093/ jac/dkw184] [
DOI:10.1093/jac/dkw184] [
PMID]
7. Dadgostar P. (2019). Antimicrobial resistance: implications and costs. Infection and Drug Resistance. 12: 3903-3910. [DOI: 10.2147/IDR.S234610] [
DOI:10.2147/IDR.S234610] [
PMID] [
PMCID]
8. Edgar R., Bibi E. (1997). MdfA, an Escherichia coli multidrug resistance protein with an extraordinarily broad spectrum of drug recognition. Journal of Bacteriology. 179: 2274-2280. [DOI: 10.1128/jb.179.7.2274-2280.1997] [
DOI:10.1128/jb.179.7.2274-2280.1997] [
PMID] [
PMCID]
9. Hinić V., Ziegler J., Straub C., Goldenberger D., Frei R. (2015). Extended-spectrum β-lactamase (ESBL) detection directly from urine samples with the rapid isothermal amplification-based eazyplex® SuperBug CRE assay: proof of concept. Journal of Microbiological Methods. 119: 203-205. [DOI: 10.1016/j.mimet.2015.10.015] [
DOI:10.1016/j.mimet.2015.10.015] [
PMID]
10. Hofer U. (2019). The cost of antimicrobial resistance. Nature Reviews Microbiology. 17: 3-3. [DOI: 10.1038/s41579-018-0125-x] [
DOI:10.1038/s41579-018-0125-x] [
PMID]
11. Jesumirhewe C., Springer B., Allerberger F., Ruppitsch W. (2020). Whole genome sequencing of extended spectrum β-lactamase genes in Enterobacteriaceae isolates from Nigeria. PLoS One. 15: e0231146 . [DOI: 10.1371/journal.pone.0231146] [
DOI:10.1371/journal.pone.0231146] [
PMID] [
PMCID]
12. Magiorakos A.-P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., Paterson D.L., Rice L.B., et al. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection. 18: 268-281. [DOI: 10.1111/j. 1469-0691.2011.03570.x] [
DOI:10.1111/j.1469-0691.2011.03570.x] [
PMID]
13. Musa B.M., Imam H., Lendel A., Abdulkadir I., Gumi H.S., Aliyu M.H., Habib A.G. (2020). The burden of extended-spectrum β-lactamase-producing Enterobacteriaceae in Nigeria: a systematic review and meta-analysis. Transactions of the Royal Society of Tropical Medicine and Hygiene. 114: 241-248. [DOI: 10.1093/trstmh/trz125] [
DOI:10.1093/trstmh/trz125] [
PMID]
14. Nwaiwu, O. (2021). Output from KmerResistance data base 2.2 of acquired antimicrobial resistance genes from Nigerian E. coli genomes", Mendeley Data, V1. [DOI: 10.17632/jkjcmtzvps.1]
15. Nwaiwu O., Aduba C.C. (2020). An in silico analysis of acquired antimicrobial resistance genes in Aeromonas plasmids. AIMS Microbiology. 6:75-91. [DOI: 10.3934/microbiol.2020005]
16. Ojo O.E., Schwarz S., Michael G.B. (2016). Detection and characterization of extended-spectrum β-lactamase-producing Escherichia coli from chicken production chains in Nigeria. Veterinary Microbiology. 194: 62-68. [DOI: 10.1016/j.vetmic. 2016.04.022] [
DOI:10.1016/j.vetmic.2016.04.022] [
PMID]
17. Palma E., Tilocca B., Roncada P. (2020). Antimicrobial resistance in veterinary medicine: an overview. International Journal of Molecular Sciences. 21: 1914. [DOI: 10.3390/ijms21061914] [
DOI:10.3390/ijms21061914] [
PMID] [
PMCID]
18. Partridge S.R., Kwong S.M., Firth N., Jensen S.O. (2018). Mobile genetic elements associated with antimicrobial resistance. Clinical Microbiology Reviews. 31: e00088-17. [DOI: 10.1128/CMR.00088-17] [
DOI:10.1128/CMR.00088-17] [
PMID] [
PMCID]
19. Poirel L., Madec J.-Y., Lupo A., Schink A.-K., Kieffer N., Nordmann P., Schwarz S. (2018). Antimicrobial resistance in Escherichia coli. Microbiology Spectrum. 6. [DOI: 10.1128/ microbiolspec.ARBA-0026-2017] [
DOI:10.1128/microbiolspec.ARBA-0026-2017] [
PMID]
20. Tanko N., Bolaji R.O., Olayinka A.T., Olayinka B.O. (2020). A systematic review on the prevalence of extended-spectrum beta lactamase-producing Gram-negative bacteria in Nigeria. Journal of Global Antimicrobial Resistance. 22: 488-496. [DOI: 10.1016/j.jgar.2020.04.010] [
DOI:10.1016/j.jgar.2020.04.010] [
PMID]
21. Yeung A.W.K., Tzvetkov N.T., Gupta V.K., Gupta S.C., Orive G., Bonn G.K., Fiebich B., Bishayee A., Efferth T., Xiao J., Silva A.S., Russo G.L., et al. (2019). Current research in biotechnology: exploring the biotech forefront. Current Research in Biotechnology. 1: 34-40. [DOI: 10.1016/j.crbiot.2019.08.003] [
DOI:10.1016/j.crbiot.2019.08.003]