Volume 8, Issue 4 (December 2021)                   J. Food Qual. Hazards Control 2021, 8(4): 169-177 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Başaran B, Kanbur E, Birinci C, Aydın F. Determination of Acrylamide and 5-hydroxymethyl-2-furfural (HMF) Levels and Related Parameters in Turkish Pekmez (A Traditional Fruit Product). J. Food Qual. Hazards Control. 2021; 8 (4) :169-177
URL: http://jfqhc.ssu.ac.ir/article-1-917-en.html
Department of Travel, Tourism and Recreation Services, Ardeşen Vocational School, Recep Tayyip Erdogan University, Rize 53100, Turkey , burhan.basaran@erdogan.edu.tr
Abstract:   (475 Views)
Background: Pekmez is an important fruit-based food of Turkish culinary culture. The aim of this study is to determine the levels of acrylamide (AA), 5-hydroxymethyl-2-furfural (HMF) and other selected parameters in grape, mulberry and carob Pekmez.
Methods: AA and HMF were analyzed by Liquid Chromatography and High Performance Liquid Chromatography, respectively. Also, glucose, fructose, pH, protein, total phenolic, and color (L*a*b*) were analyzed. The analyses were done by IBM SPSS Statistics 26 software.
Results: The average AA, HMF, glucose, fructose, total reducing sugar, pH, protein, total phenolic, and colour (L*a*b*) values of Pekmez were 302 µg/kg, 25.7 mg/kg, 13.2%, 14.0%, 27.2%, 5.27, 1.16%, 4.64 mg GAE/g, and 4.83*5.60*1.52, respectively. AA indicates a moderate positive linear correlation with HMF, protein, total phenolic; whereas AA indicates a moderate negative linear correlation with glucose, fructose, total reducing sugar, pH, and L*a*b.
Conclusion: It is presumed that heat treatment is a determinant in AA and HMF formulation.

DOI: 10.18502/jfqhc.8.4.8258 
Full-Text [PDF 475 kb]   (156 Downloads)    
Type of Study: Original article | Subject: Special
Received: 21/09/20 | Accepted: 21/11/22 | Published: 21/12/29

References
1. Abraham K., Gürtler R., Berg K., Heinemeyer G., Lampen A., Appel K.E. (2011). Toxicology and risk assessment of 5-hydroxymethylfurfural in food. Molecular Nutrition and Food Research. 55: 667-678. [DOI: 10.1002/mnfr.201000564] [DOI:10.1002/mnfr.201000564] [PMID]
2. Adani G., Filippini T., Wise L.A., Halldorsson T.I., Blaha L., Vinceti M. (2020). Dietary intake of acrylamide and risk of breast, endometrial, and ovarian cancers: a systematic review and dose-response meta-analysis. Cancer Epidemiology, Biomarkers and Prevention. 29: 1095-1106. [DOI: 10.1158/1055-9965.EPI-19-1628] [DOI:10.1158/1055-9965.EPI-19-1628] [PMID]
3. Akgün B., Arıcı M. (2019). Evaluation of acrylamide and selected parameters in some Turkish coffee brands from the Turkish market. Food Additives and Contaminants: Part A. 36: 548-560. [DOI: 10.1080/19440049.2019.1586454] [DOI:10.1080/19440049.2019.1586454] [PMID]
4. Aliyazicioglu R., Kolayli S., Kara M., Yildiz O., Sarikaya A.O., Cengiz S., Er F. (2009). Determination of chemical, physical and biological characteristics of some pekmez (molasses) from Turkey. Asian Journal of Chemistry. 21: 2215-2223.
5. Alpözen E., Üren A. (2013). Determination of acrylamide levels of "Izmir gevregi" and effects of cooking parameters on acrylamide formation. Journal of Agricultural and Food Chemistry. 61: 7212-7218. [DOI: 10.1021/jf401684d] [DOI:10.1021/jf401684d] [PMID]
6. Bassama J., Brat P., Bohuon P., Boulanger R., Günata Z. (2010). Study of acrylamide mitigation in model system: effect of pure phenolic compounds. Food Chemistry. 123: 558-562. [DOI: 10.1016/j.foodchem.2010.04.071] [DOI:10.1016/j.foodchem.2010.04.071]
7. Batu A. (2005). Production of liquid and white solid pekmez in Turkey. Journal of Food Quality. 28: 417-427. [DOI: 10.1111/j.1745-4557.2005.00045.x] [DOI:10.1111/j.1745-4557.2005.00045.x]
8. Boz H., Karaoğlu M.M., Kaban G. (2016). The effects of cooking time and sugar on total phenols, hydroxymethylfurfural and acrylamide content of mulberry leather (pestil). Quality Assurance and Safety of Crops and Foods. 8: 493-500. [DOI: 10.3920/QAS2014.0558] [DOI:10.3920/QAS2014.0558]
9. Cañas S., Perez-Moral N., Edwards C.H. (2020). Effect of cooking, 24 h cold storage, microwave reheating, and particle size on in vitro starch digestibility of dry and fresh pasta. Food and Function. 11: 6265-6272. [DOI: 10.1039/D0FO00849D] [DOI:10.1039/D0FO00849D] [PMID]
10. Capuano E., Fogliano V. (2011). Acrylamide and 5-hydroxymethylfurfural (HMF): a review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT - Food Science and Technology. 44: 793-810. [DOI: 10.1016/j. lwt.2010.11.002] [DOI:10.1016/j.lwt.2010.11.002]
11. Demir Kanbur E., Yuksek T., Atamov V., Ozcelik A.E. (2021). A comparison of the physicochemical properties of chestnut and highland honey: the case of Senoz valley in the Rize province of Turkey. Food Chemistry. 345: 128864. [DOI: 10.1016/j.foodchem.2020.128864] [DOI:10.1016/j.foodchem.2020.128864] [PMID]
12. Duarte-Salles T., Von Stedingk H., Granum B., Gützkow K.B., Rydberg P., Törnqvist M., Mendez M.A., Brunborg G., Brantsæter A.L., Meltzer H.M., Alexander J., Haugen M. (2013). Dietary acrylamide intake during pregnancy and fetal growth-results from the Norwegian mother and child cohort study (MoBa). Environmental Health Perspectives. 121: 374-379. [DOI: 10.1289/ehp.1205396] [DOI:10.1289/ehp.1205396] [PMID] [PMCID]
13. Erbil D., Yeşilçubuk N.Ş. (2020). Endüstriyel ve geleneksel yöntemlerle üretilmiş farklı pekmez çeşitlerinin bazı fizikokimyasal ve kalite özelliklerinin belirlenmesi. Institute of Science and Technology, İstanbul Technical University, Turkey, Thesis (M.Sc.). (in Turkish with an abstract in English).
14. Ergun M., Kalan C., Süslüoğlu Z. (2019). Bingöl ilinin servi yöresinde geleneksel yollarla ile üretilen ak dut pekmezlerinin bazı fiziksel ve kimyasal özelliklerinin belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi. 6: 917-924. [Turkish with English abstract] [DOI: 10.30910/turkjans.633637]. [DOI:10.30910/turkjans.633637]
15. European Commission. (2019). Commission recommendation (EU) 2019/1888 of 7 November 2019 on the monitoring of the presence of acrylamide in certain foods. Official Journal of the European :union:.
16. European Food Safety Authority. (2011). Update on furan levels in food from monitoring years 2004-2010 and exposure assessment. EFSA Journal. 9: 2347. [DOI: 10.2903/j.efsa. 2011.2347] [DOI:10.2903/j.efsa.2011.2347]
17. European Food Safety Authority. (2015). Scientific opinion on acrylamide in food. EFSA panel on contaminants in the food chain (CONTAM). EFSA Journal. 13: 4104. [DOI: 10.2903/j.efsa.2015.4104] [DOI:10.2903/j.efsa.2015.4104]
18. Gökmen V., Açar Ö.Ç., Köksel H., Acar J. (2007). Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formation in cookies. Food Chemistry. 104: 1136-1142. [DOI: 10.1016/j.foodchem.2007. 01.008] [DOI:10.1016/j.foodchem.2007.01.008]
19. Gökmen V., Şenyuva H.Z. (2006). Improved method for the determination of hydroxymethylfurfural in baby foods using liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry. 54: 2845-2849. [DOI: 10.1021/jf053091y] [DOI:10.1021/jf053091y] [PMID]
20. Hamzalıoğlu A., Gökmen V. (2020). 5-Hydroxymethylfurfural accumulation plays a critical role on acrylamide formation in coffee during roasting as confirmed by multiresponse kinetic modelling. Food Chemistry. 318: 126467. [DOI: 10.1016/j. foodchem.2020.126467] [DOI:10.1016/j.foodchem.2020.126467] [PMID]
21. Heshmati A., Ghadimi S., Ranjbar A., Mousavi Khaneghah A. (2019). Changes in aflatoxins content during processing of pekmez as a traditional product of grape. LWT - Food Science and Technology. 103: 178-185. [DOI: 10.1016/j.lwt.2019. 01.001] [DOI:10.1016/j.lwt.2019.01.001]
22. International Agency for Research on Cancer. (1994). IARC Monographs on the Identification of Carcinogenic Hazards to Humans. URL: https://monographs.iarc.who.int/list-of-classifications/.
23. Joint FAO/WHO Expert Committee on Food Additives. (2011). Evaluation of certain contaminants in food: seventy-second report of the joint FAO/WHO expert committee on food additives. WHO Technical Report Series. 959. URL: https://apps.who.int/iris/handle/10665/44514
24. Karababa E., Develi Isikli N. (2005). Pekmez: a traditional concentrated fruit product. Food Reviews International. 21: 357-366. [DOI: 10.1080/87559120500222714] [DOI:10.1080/87559120500222714]
25. Karataş N., Şengül M. (2018). Dut pekmezinin bazı kimyasal ve fiziksel özellikleri ile antioksidan aktivitesi üzerine depolamanın etkisi. Türk Tarım ve Doğa Bilimleri Dergisi. 5: 34-43 (in Turkish with an abstract in English).
26. Kopanska M., Muchacka R., Czech J., Batoryna M., Formicki G. (2018). Acrylamide toxicity and cholinergic nervous system. Journal of Physiology and Pharmacology. 69: 847-858. [DOI: 10.26402/jpp.2018.6.03]
27. Lee H.S., Nagy S. (1990). Relative reactivities of sugars in the formation of 5-hydroxymethylfurfural in sugar-catalyst model systems. Journal of Food Processing and Preservation. 14: 171-178. [DOI: 10.1111/j.1745-4549.1990.tb00126.x] [DOI:10.1111/j.1745-4549.1990.tb00126.x]
28. Makawi S.Z.A., Taha M.I., Zakaria B.A., Siddig B., Mahmod H., Elhussein A.R.M., Kariem E.A.G. (2009). Identification and quantification of 5-hydroxymethyl furfural HMF in some sugar-containing food products by HPLC. Pakistan Journal of Nutrition. 8: 1391-1396. [DOI:10.3923/pjn.2009.1391.1396]
29. National Center for Biotechnology Information. (2021). Acrylamide. URL: https://pubchem.ncbi.nlm.nih.gov/ compound/acrylamide#section=Top.
30. Nguyen H.T., Van Der Fels-Klerx H.J., Peters R.J.B., Van Boekel M.A.J.S. (2016). Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: part I: effects of sugar type. Food Chemistry. 192: 575-585. [DOI: 10.1016/j. foodchem.2015.07.016] [DOI:10.1016/j.foodchem.2015.07.016] [PMID]
31. Oral R.A., Dogan M., Sarioglu K. (2014). Effects of certain polyphenols and extracts on furans and acrylamide formation in model system, and total furans during storage. Food Chemistry. 142: 423-429. [DOI: 10.1016/j.foodchem. 2013.07.077] [DOI:10.1016/j.foodchem.2013.07.077] [PMID]
32. Ölmez H., Tuncay F., Özcan N., Demirel S. (2008). A survey of acrylamide levels in foods from the Turkish market. Journal of Food Composition and Analysis. 21: 564-568. [DOI: 10.1016/j.jfca.2008.04.011] [DOI:10.1016/j.jfca.2008.04.011]
33. Özcan M.M., Alpar Ş., Juhaimi F.A. (2015). The effect of boiling on qualitative properties of grape juice produced by the traditional method. Journal of Food Science and Technology. 52: 5546-5556. [DOI: 10.1007/s13197-014-1628-8] [DOI:10.1007/s13197-014-1628-8] [PMID] [PMCID]
34. Özhan B., Karadeniz F., Erge H.S. (2010). Effect of storage on nonenzymatic browning reactions in carob pekmez. International Journal of Food Science and Technology. 45: 751-757. [DOI: 10.1111/j.1365-2621.2010. 02190.x] [DOI:10.1111/j.1365-2621.2010.02190.x]
35. Roach J.A.G., Andrzejewski D., Gay M.L., Nortrup D., Musser S.M. (2003). Rugged LC-MS/MS survey analysis for acrylamide in foods. Journal of Agricultural and Food Chemistry. 51: 7547-7554. [DOI: 10.1021/jf0346354] [DOI:10.1021/jf0346354] [PMID]
36. Shakeri F., Shakeri S., Ghasemi S., Troise A.D., Fiore A. (2019). Effects of formulation and baking process on acrylamide formation in Kolompeh, a traditional cookie in Iran. Journal of Chemistry. 2019: 1425098. [DOI: 10.1155/2019/1425098] [DOI:10.1155/2019/1425098]
37. Şimşek A., Artık N. (2002). Studies of composition of concentrates from different fruit. GIDA. 27: 459-467.
38. Singleton V.L., Orthofer R., Lamuela-Raventós R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology. 299: 152-178. [DOI: 10.1016/S0076-6879(99) 99017-1] [DOI:10.1016/S0076-6879(99)99017-1]
39. Sordini B., Veneziani G., Servili M., Esposto S., Selvaggini R., Lorefice A., Taticchi A. (2019). A quanti-qualitative study of a phenolic extract as a natural antioxidant in the frying processes. Food Chemistry. 279: 426-434. [DOI: 10.1016/j. foodchem.2018.12.029] [DOI:10.1016/j.foodchem.2018.12.029] [PMID]
40. Stadler R.H., Blank I., Varga N., Robert F., Hau J., Guy P.A., Robert M.-C., Riediker S. (2002). Acrylamide from maillard reaction products. Nature. 419: 449-450. [DOI: 10.1038/ 419449a] [DOI:10.1038/419449a] [PMID]
41. Tareke E., Rydberg P., Karlsson P., Eriksson S., Tornqvist M. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry. 51: 4998-5006. [DOI:10.1021/jf020302f] [DOI:10.1021/jf020302f] [PMID]
42. Toker O.S., Dogan M., Ersöz N.B., Yilmaz M.T. (2013). Optimization of the content of 5-hydroxymethylfurfural (HMF) formed in some molasses types: HPLC-DAD analysis to determine effect of different storage time and temperature levels. Industrial Crops and Products. 50: 137-144. [DOI: 10.1016/j.indcrop.2013.05.030] [DOI:10.1016/j.indcrop.2013.05.030]
43. Turkish Standard (2008). Determination of fructose, glucose, sucrose, turanus and maltose content in honey using high performance liquid chromatography (HPLC) method. Turkish Standard, 13,359.
44. Turkish Food Codex grape molasses communique (Tebliğ No: 2017/8), Sayı: 30110.
45. Türkben C., Suna S., İzli G., Uylaşer V., Demir C. (2016). Physical and chemical properties of pekmez (Molasses) produced with different grape cultivars. Journal of Agricultural Sciences. 22: 339-348. [DOI: 10.1501/Tarimbil_0000001392] [DOI:10.1501/Tarimbil_0000001392]
46. TÜRKOMP. (2021a). Natıonal food composition database. Dried seed black raisin. URL: http://www.turkomp.gov.tr/food-327.
47. TÜRKOMP. (2021b). Natıonal food composition database. Dried white mulberry. URL: http://www.turkomp.gov.tr/food-373.
48. TÜRKOMP. (2021c). Natıonal food composition database. Dried carob. URL: http://www.turkomp.gov.tr/food-376.
49. Tüzün S., Baş İ., Karakavuk E., Sanyürek N.K., Benzer F. (2020). Çeşitli pekmez türlerinde farklı yöntemlerle tespit edilen antioksidan aktivitelerin karşılaştırılması. Türk Tarım ve Doğa Bilimleri Dergisi. 7: 323-330 (Turkish with English abstract). [DOI:10.30910/turkjans.725782] [DOI:10.30910/turkjans.725782]
50. Yıldız O. (2013). Physicochemical and sensory properties of mulberry products: gümüşhane pestil and köme. Turkish Journal of Agriculture and Forestry. 37: 762-771. [DOI: 10.3906/tar-1301-41] [DOI:10.3906/tar-1301-41]
51. Zhang Y., Huang M., Wang Q., Cheng J. (2016). Structure-guided unravelling: phenolic hydroxyls contribute to reduction of acrylamide using multiplex quantitative structure-activity relationship modelling. Food Chemistry. 199: 492-501. [DOI: 10.1016/j.foodchem.2015.12.038] [DOI:10.1016/j.foodchem.2015.12.038] [PMID]
52. Zhang Y., Zhang Y. (2008). Effect of natural antioxidants on kinetic behavior of acrylamide formation and elimination in low-moisture asparagine-glucose model system. Journal of Food Engineering. 85: 105-115. [DOI: 10.1016/j.jfoodeng.2007.07. 013] [DOI:10.1016/j.jfoodeng.2007.07.013]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb