Volume 9, Issue 2 (June 2022)                   J. Food Qual. Hazards Control 2022, 9(2): 105-111 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Permatasari H, Nurkolis F, Gunawan W, Kumalawati D, Handoko M, Afifah D, et al . Sea Grapes Paper Towel Enriched with Activated Carbon: A Practical Innovation to Reduce Acrylamide in Fried Food. J. Food Qual. Hazards Control 2022; 9 (2) :105-111
URL: http://jfqhc.ssu.ac.ir/article-1-989-en.html
Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang, 65145, Indonesia , happykp@ub.ac.id
Abstract:   (583 Views)
Background: One of the possible carcinogenic substances found in foods is Acrylamide (AA). This study aims to combine and innovate sea grapes (Caulerpa racemosa) extract with activated carbon into paper towels that can absorb AA levels in fried foods.
Methods: The paper towel was created with composition of activated carbon: sea grapes extract: paper pulp using following formula: F0=0:0:100; F1=5:5:100; F2=10:5:100; F3=20:5:100. The optimal paper towel formulation was chosen based on AA reduction, fat absorption, and organoleptic properties. Data were statistically analyzed by SPSS 26.
Results: Wrapping a fried potato using the sea grapes paper towel enriched with activated carbon for a min decreased significantly the levels of AA and oil. Although, it significantly reduced the levels of AA and percent of oil in the fried potato, but it did not change the taste and texture (p=0.566 and p=0.330). The best formulation of paper towels with composition of activated carbon, sea grapes extract, and paper pulp of 20:5:100 had the best AA level reduction, oil absorption properties, and a good taste score.
Conclusion: This study is the first to successfully combine and innovate sea grapes extract with activated carbon as a food tissue that can reduce AA in fried foods.

DOI: 10.18502/jfqhc.9.2.10647
Full-Text [PDF 494 kb]   (238 Downloads)    
Type of Study: Original article | Subject: Special
Received: 21/09/24 | Accepted: 22/03/03 | Published: 22/06/27

References
1. Alkhatib A.J., Alzaailay K. (2018). The appropriate use of activated charcoal in pharmaceutical and toxicological approaches. Biomedical Journal of Scientific and Technical Research. 5: 2018. [DOI: 10.26717/BJSTR.2018.05.001170] [DOI:10.26717/BJSTR.2018.05.0001170]
2. Ara J., Sultana V., Qasim R., Ahmad V.U. (2002). Hypolipidaemic activity of seaweed from Karachi coast. Phytotherapy Research. 16: 479-483. [DOI: 10.1002/ptr.909] [DOI:10.1002/ptr.909] [PMID]
3. Bajpai P. (2018). Brief description of the pulp and papermaking process. In: Biotechnology for pulp and paper processing. Springer, Singapore. pp: 9-26. [DOI: 10.1007/978-981-10-7853-8_2] [DOI:10.1007/978-981-10-7853-8_2]
4. Beitāne I., Ciproviča I., Jākobsone I., Jansone J., Kārkliņa D., Kļava D., Krūmiņa-Zemture G., Kunkulberga D., Muižniece-Brasava S., Pastare A., Spalvēna A., Zute S. (2022). Food, nutrition, and health in Latvia. In: Nutritional and health aspects of traditional and ethnic foods of eastern Europe. Academic Press. pp: 159-186. [DOI: 10.1016/B978-0-12-811734-7.00010-4] [DOI:10.1016/B978-0-12-811734-7.00010-4]
5. Bušová M., Bencko V., Laktičová K.V., Holcátová I., Vargová M. (2020). Risk of exposure to acrylamide. Central European Journal of Public Health. 28: S43-S46. [DOI: 10.21101/ cejph.a6177] [DOI:10.21101/cejph.a6177]
6. Chu M., Peng J., Zhao J., Liang S., Shao Y., Wu Q. (2013). Laser light triggered-activated carbon nanosystem for cancer therapy. Biomaterials. 34: 1820-1832. [DOI: 10.1016/ j.biomaterials.2012.11.027] [DOI:10.1016/j.biomaterials.2012.11.027] [PMID]
7. De Lima K.C.M., Barros H.D.D.F., Passos T.S., Maciel B.L.L. (2019). The effect of using different oils and paper towel in vegetable oil absorption of fried recipes. Journal Of Culinary Science and Technology. 17: 373-384. [DOI: 10.1080/ 15428052.2018.1465503] [DOI:10.1080/15428052.2018.1465503]
8. Deribew H.A., Woldegiorgis A.Z. (2021). Acrylamide levels in coffee powder, potato chips and French fries in Addis Ababa city of Ethiopia. Food Control. 123: 107727. [DOI: 10. 1016/j.foodcont.2020.107727] [DOI:10.1016/j.foodcont.2020.107727]
9. Gatti E., Di Virgilio N., Magli M., Predieri S. (2011). Integrating sensory analysis and hedonic evaluation for apple quality assessment. Journal of Food Quality. 34: 126-132. [DOI: 10. 1111/j.1745-4557.2011.00373.x] [DOI:10.1111/j.1745-4557.2011.00373.x]
10. Hao H., Han Y., Yang L., Hu L., Duan X., Yang X., Huang R. (2019). Structural characterization and immunostimulatory activity of a novel polysaccharide from green alga Caulerpa racemosa var peltata. International Journal of Biological Macromolecules. 134: 891-900. [DOI: 10.1016/j.ijbiomac. 2019.05.084] [DOI:10.1016/j.ijbiomac.2019.05.084] [PMID]
11. Hermanto S., Adawiyah R. (2010). Analisis kadar akrilamida dalam sediaan roti kering secara KCKT. Jurnal Kimia Valensi. 2: 354-361. [DOI: 10.15408/jkv.v2i1.235] [Indonesian with English abstract] [DOI:10.15408/jkv.v2i1.235]
12. Jakobek L. (2015). Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chemistry. 175: 556-567. [DOI: 10.1016/j.foodchem.2014.12.013] [DOI:10.1016/j.foodchem.2014.12.013] [PMID]
13. Juurlink D.N. (2016). Activated charcoal for acute overdose: a reappraisal. British Journal of Clinical Pharmacology. 81: 482-487. [DOI: 10.1111/bcp.12793] [DOI:10.1111/bcp.12793] [PMID] [PMCID]
14. Kim W.H., Kim H.J., Kim S.H., Jung J.H., Park H.Y., Lee J., Kim W.W., Park J.Y., Chae Y.S., Lee S.J. (2019). Ultrasound-guided dual-localization for axillary nodes before and after neoadjuvant chemotherapy with clip and activated charcoal in breast cancer patients: a feasibility study. BMC Cancer. 19: 859. [DOI: 10.1186/s12885-019-6095-1] [DOI:10.1186/s12885-019-6095-1] [PMID] [PMCID]
15. Nematollahi A., Mollakhalili Meybodi N., Mousavi Khaneghah A. (2021). An overview of the combination of emerging technologies with conventional methods to reduce acrylamide in different food products: perspectives and future challenges. Food Control. 127: 108144. [DOI: 10.1016/j.foodcont.2021. 108144] [DOI:10.1016/j.foodcont.2021.108144]
16. Ou S., Shi J., Huang C., Zhang G., Teng J., Jiang Y., Yang B. (2010). Effect of antioxidants on elimination and formation of acrylamide in model reaction systems. Journal of Hazardous Materials. 182: 863-868. [DOI: 10.1016/j. jhazmat.2010.06.124] [DOI:10.1016/j.jhazmat.2010.06.124] [PMID]
17. Pelucchi C., La Vecchia C., Bosetti C., Boyle P., Boffetta P. (2011). Exposure to acrylamide and human cancer-a review and meta-analysis of epidemiologic studies. Annals of Oncology. 22: 1487-1499. [DOI: 10.1093/annonc/mdq610] [DOI:10.1093/annonc/mdq610] [PMID]
18. Peñalver R., Lorenzo J.M., Ros G., Amarowicz R., Pateiro M., Nieto G. (2020). Seaweeds as a functional ingredient for a healthy diet. Marine Drugs. 18: 301. [DOI: 10.3390/ md18060301] [DOI:10.3390/md18060301] [PMID] [PMCID]
19. Permatasari H.K., Nurkolis F., Augusta P.S., Mayulu N., Kuswari M., Taslim N.A., Wewengkang D.S., Batubara S.C., Gunawan W.B. (2021). Kombucha tea from seagrapes (Caulerpa racemosa) potential as a functional anti-ageing food: in vitro and in vivo study. Heliyon. 7: e07944. [DOI: 10.1016/j.heliyon.2021.e07944] [DOI:10.1016/j.heliyon.2021.e07944] [PMID] [PMCID]
20. Pounsamy M., Somasundaram S., Palanivel S., Ganesan S. (2019). Removal of fat components in high TDS leather wastewater by saline-tolerant lipase-assisted nanoporous-activated carbon. Applied Biochemistry and Biotechnology. 187: 474-492. [DOI: 10.1007/s12010-018-2833-0] [DOI:10.1007/s12010-018-2833-0] [PMID]
21. Pruser K.N., Flynn N.E. (2011). Acrylamide in health and disease. Frontiers in Bioscience-Scholar. 3: 41-51. [DOI: 10.2741/ s130] [DOI:10.2741/s130] [PMID]
22. Siddeeg A., Xia W. (2015). Oxidative stability, chemical composition and organoleptic properties of seinat (Cucumis melo var. tibish) seed oil blends with peanut oil from China. Journal of Food Science and Technology. 52: 8172-8179. [DOI: 10.1007/s13197-015-1889-x] [DOI:10.1007/s13197-015-1889-x] [PMID] [PMCID]
23. Singh T., Kushwah A.S. (2018). Acrylamide: a possible risk factor for cardiac health. Asian Journal of Pharmaceutical and Clinical Reearchs. 11: 39-48. [DOI: 10.22159/ajpcr.2018. v11i10.27073] [DOI:10.22159/ajpcr.2018.v11i10.27073]
24. Susilowati A., Mulyawan A.E., Putri T.W. (2019). Antioxidant activity of the sea grape (Caulerpa racemasa) as an antioxidant lotion. Oriental Journal of Chemistry. 35: 1443-1447. [DOI: 10.13005/ojc/350427] [DOI:10.13005/ojc/350427]
25. Tanna B., Yadav S., Mishra A. (2020). Anti-proliferative and ROS-inhibitory activities reveal the anticancer potential of Caulerpa species. Molecular Biology Reports. 47: 7403-7411. [DOI: 10.1007/s11033-020-05795-8] [DOI:10.1007/s11033-020-05795-8] [PMID]
26. Virk-Baker M.K., Nagy T.R., Barnes S., Groopman J. (2014). Dietary acrylamide and human cancer: a systematic review of literature. Nutrition and Cancer. 66: 774-790. [DOI: 10.1080/01635581.2014.916323] [DOI:10.1080/01635581.2014.916323] [PMID] [PMCID]
27. Wu G., Jiang B., Zhou L., Wang A., Wei S. (2021). Coconut-shell-derived activated carbon for NIR photo-activated synergistic photothermal-chemodynamic cancer therapy. Journal of Materials Chemistry B. 9: 2447-2456. [DOI: 10.1039/ D0TB02782K] [DOI:10.1039/D0TB02782K] [PMID]
28. Zellner T., Prasa D., Färber E., Hoffmann-Walbeck P., Genser D., Eyer F. (2019). The use of activated charcoal to treat intoxications. Deutsches Aerzteblatt International. 116: 311-317. [DOI: 10.3238/arztebl.2019.0311] [DOI:10.3238/arztebl.2019.0311] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb