1. Adesina I.A., Ojokoh A.O., Arotupin D.J. (2016). Screening, identification and antibiotic susceptibility pattern of bacteriocin-producing lactic acid bacteria isolated from selected traditionally fermented products. British Microbiology Research Journal. 11: 1-9. [DOI: 10.9734/BMRJ/2016/21427] [
DOI:10.9734/BMRJ/2016/21427]
2. Aneja K.R., Dhiman R., Aggarwal N.K., Aneja A. (2014a). Emerging preservation techniques for controlling spoilage and pathogenic microorganisms in fruit juices. International Journal of Microbiology. 2014. [DOI: 10.1155/2014/758942] [
DOI:10.1155/2014/758942] [
PMID] [
PMCID]
3. Aneja K.R., Dhiman R., Aggarwal N.K., Kumar V., Kaur M. (2014b). Microbes associated with freshly prepared juices of citrus and carrots. International Journal of Food Science. 2014. [DOI: 10.1155/2014/408085] [
DOI:10.1155/2014/408085] [
PMID] [
PMCID]
4. Balciunas E.M., Castillo-Martinez F.A., Todorov S.D., Franco B.D.G., Converti A., Oliveira R.P. (2013). Novel biotechnological applications of bacteriocins: a review. Food Control. 32: 134-142. [DOI: 10.1016/j.foodcont.2012.11.025] [
DOI:10.1016/j.foodcont.2012.11.025]
5. Bodley M.D. (2015). Application of bacteriocins in the preservation of fruit juices (Doctoral thesis, Nelson Mandela Metropolitan University, South Africa). Retrieved from. URL: https://core. ac.uk/download/pdf/145048289.pdf.
6. Centers for Disease Control and Prevention (CDC). (2018). Staphylococcal food poisoning. URL: https:// www.cdc.gov/ foodsafety/diseases/staphylococcal.html
7. El-Ishaq A., Obirinakem S. (2015). Effect of temperature and storage on vitamin C content in fruits juice. International Journal of Chemical and Biomolecular Science. 1: 17-21.
8. Field D., Ross R.P., Hill C. (2018). Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Current Opinion in Food Science. 20: 1-6. [DOI: 10.1016/j. cofs.2018.02.004] [
DOI:10.1016/j.cofs.2018.02.004]
9. Hartmann H.A., Wilke T., Erdmann R. (2011). Efficacy of bacteriocin-containing cell-free culture supernatants from lactic acid bacteria to control Listeria monocytogenes in food. International Journal of Food Microbiology. 146: 192-199. [DOI: 10.1016/j.ijfoodmicro.2011.02.031] [
DOI:10.1016/j.ijfoodmicro.2011.02.031] [
PMID]
10. Heredia F.J., González-Miret M.L., Meléndez-Martínez A.J., Vicario I.M. (2013). Instrumental assessment of the sensory quality of juices. In: Kilcast D. (Editor). Instrumental assessment of food sensory quality. Woodhead Publishing, Sawston, United Kingdom. pp. 565-610e. [DOI: 10.1533/9780857098856.3. 565] [
DOI:10.1533/9780857098856.3.565]
11. Jiang Y.H., Xin W.G., Yang L.Y., Ying J.P., Zhao Z.S., Lin L.B., Li X.Z., Zhang Q.L. (2022). A novel bacteriocin against Staphylococcus aureus from Lactobacillus paracasei isolated from Yunnan traditional fermented yogurt: purification, antibacterial characterization, and antibiofilm activity. Journal of Dairy Science. 105: 2094-2107. [DOI: 10.3168/jds.2021-21126] [
DOI:10.3168/jds.2021-21126] [
PMID]
12. Kadariya J., Smith T.C., Thapaliya D. (2014). Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. Biomed Research International. 2014: 827965. [DOI: 10.1155/2014/827965] [
DOI:10.1155/2014/827965] [
PMID] [
PMCID]
13. Kaktcham P.M., Kouam E.M.F., Tientcheu M.L.T., Temgoua J.B., Wacher C., Ngoufack F.Z., De Lourdes Perez-Chabela M. (2019). Nisin-producing Lactococcus lactis subsp. lactis 2MT isolated from freshwater Nile tilapia in Cameroon: bacteriocin screening, characterization, and optimization in a low-cost medium. LWT - Food Science and Technology. 107: 272-279. [DOI: 10.1016/j.lwt.2019.03.007] [
DOI:10.1016/j.lwt.2019.03.007]
14. Kanagaraj N., Duraisamy S., Balakrishnan S., Narayanapillai U., Ramasamy G. (2012). Characterization of bacteriocin producing lactic acid bacteria and its application as a food preservative. African Journal of Microbiology Research. 6: 1138-1146. [DOI: 10.5897/AJMR11.1214] [
DOI:10.5897/AJMR11.1214]
15. Li H.W., Xiang Y.Z., Zhang M., Jiang Y.H., Zhang Y., Liu Y.Y., Lin L.B., Zhang Q.L. (2021). A novel bacteriocin from Lactobacillus salivarius against Staphylococcus aureus: isolation, purification, identification, antibacterial and antibiofilm activity. LWT - Food Science and Technology. 140: 110826. [DOI: 10.1016/j.lwt.2020.110826] [
DOI:10.1016/j.lwt.2020.110826]
16. Mosqueda-Melgar J., Raybaudi-Massilia R.M., Martin-Belloso O. (2012). Microbiological shelf life and sensory evaluation of fruit juices treated by high-intensity pulsed electric fields and antimicrobials. Food and Bioproducts Processing. 90: 205-214. [DOI: 10.1016/j.fbp.2011.03.004] [
DOI:10.1016/j.fbp.2011.03.004]
17. Ogunbanwo S.T., Sanni A.I., Onilude A.A. (2003). Characterization of bacteriocin produced by Lactobacillus plantarum F1 and Lactobacillus brevis OG1. African Journal of Biotechnology. 2: 219-227. [DOI: 10.5897/AJB2003.000-1045] [
DOI:10.5897/AJB2003.000-1045]
18. O' Shea E.F., Cotter P.D., Ross R.P., Hill C. (2013). Strategies to improve the bacteriocin protection provided by lactic acid bacteria. Current Opinion in Biotechnology. 24: 130-134. [DOI: 10.1016/j.copbio.2012.12.003] [
DOI:10.1016/j.copbio.2012.12.003] [
PMID]
19. Pei J., Huang Y., Ren T., Guo Y., Dang J., Tao Y., Zhang Y., Abd El-Aty A.M. (2022). The antibacterial activity mode of action of plantaricin YKX against Staphylococcus aureus. Molecules. 27: 4280. [DOI: 10.3390/molecules27134280] [
DOI:10.3390/molecules27134280] [
PMID] [
PMCID]
20. Perez R.H., Zendo T., Sonomoto K. (2014). Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microbial Cell Factories. 13. S3. [DOI: 10.1186/ 1475-2859-13-S1-S3] [
DOI:10.1186/1475-2859-13-S1-S3]
21. Settanni L., Corsetti A. (2008). Application of bacteriocins in vegetable food biopreservation. International Journal of Food Microbiology. 121: 123-138. [DOI: 10.1016/j.ijfoodmicro. 2007.09.001] [
DOI:10.1016/j.ijfoodmicro.2007.09.001] [
PMID]
22. Sospedra I., Rubert J., Soriano J.M., Mañes J. (2012). Incidence of microorganisms from fresh orange juice processed by squeezing machines. Food Control. 23: 282-285. [DOI: 10. 1016/j.foodcont.2011.06.025] [
DOI:10.1016/j.foodcont.2011.06.025]
23. Sumonsiri N. (2019). Effect of nisin on microbial, physical, and sensory qualities of micro-filtered coconut water (Cocos nucifera L.) during refrigerated storage. Current Research in Nutrition and Food Science; Bhopal. 7: 236-243. [DOI: 10. 12944/CRNFSJ.7.1.23] [
DOI:10.12944/CRNFSJ.7.1.23]
24. Tambeker D.H., Jaiswal V.J., Dhanorker D.V., Gulhane P.B., Dudhane M.N. (2009). Microbial quality and safety of street vended fruit juices: a case study of Amravati city. Internet Journal of Food Safety. 10: 72-76.
25. Titarmare A., Dabholkar P., Godbole S. (2009). Bacteriological analysis of street vended fresh fruit and vegetable juices in Nagpur city, India. Internet Journal of Food Safety. 11: 1-3.
26. Tribst A.A., Sant'Ana A., De Massaguer P.R. (2009). Review: microbiological quality and safety of fruit juices-past, present and future perspectives. Critical Reviews in Microbiology. 35: 310-339. [DOI: 10.3109/10408410903241428] [
DOI:10.3109/10408410903241428] [
PMID]
27. Wedajo B., Kadire A. (2019). Assessment of bacterial load of some fresh and packed fruit juices in Arba Minch town, Ethiopia. Journal of Nutrition and Food Sciences. 9: 759. [DOI: 10. 35248/2155-9600.19.9.1000759] [
DOI:10.35248/2155-9600.19.9.759]
28. Wu S., Duan N., Gu H., Hao L., Ye H., Gong W., Wang Z. (2016). A review of the methods for detection of Staphylococcus aureus enterotoxins. Toxins. 8: 176. [DOI: 10.3390/toxins 8070176] [
DOI:10.3390/toxins]