Volume 8, Issue 4 (December 2021)                   J. Food Qual. Hazards Control 2021, 8(4): 186-189 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nwaiwu O, Onyeaka H. Acquired Antimicrobial Resistance Genes of Escherichia coli Obtained from Nigeria: In silico Genome Analysis. J. Food Qual. Hazards Control. 2021; 8 (4) :186-189
URL: http://jfqhc.ssu.ac.ir/article-1-914-en.html
School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, United Kingdom , ogueri.nwaiwu@nottingham.ac.uk
Abstract:   (415 Views)
Background: Antimicrobial resistance is a global problem with enormous public health and economic impact. This study was carried out to get an overview of acquired antimicrobial resistance gene sequences in the genomes of Escherichia coli isolated from different food sources and the environment in Nigeria.
Methods: To determine the acquired antimicrobial-resistant genes prevalence, genome assemblies of 272 isolates were analyzed In silico with KmerResistance 2.2 software.
Results: A total of 107 antimicrobial resistance genes, which included genes that encode for 24 extended-spectrum beta-lactamases were detected. Potential multidrug resistance was found in 90% of the genomes analyzed. All strains analyzed contained at least one resistant gene sequence and had high similarity or homology (95% ID and above). Two strains harboured over 30 sequences of antimicrobial resistant genes, and in 24 strains over 20 genes were detected.  
Conclusion: The resistant genes found in all the genomes analyzed were acquired intra-species and not inter-species. This provides an opportunity for further studies of the orthologous nature of the genes detected and the data obtained can help monitor the epidemiology of E.coli resistant genes in the food and environment.

DOI: 10.18502/jfqhc.8.4.8260
Full-Text [PDF 380 kb]   (162 Downloads)    
Type of Study: Short communication | Subject: Special
Received: 21/09/09 | Accepted: 21/11/12 | Published: 21/12/29

References
1. Aworh M.K., Kwaga J., Okolocha E., Harden L., Hull D., Hen-driksen R.S., Thakur S. (2020). Extended-spectrum ß-lactamase-producing Escherichia coli among humans, chickens and poultry environments in Abuja, Nigeria. One Health Outlook. 2: 8. [DOI: 10.1186/s42522-020-00014-7] [DOI:10.1186/s42522-020-00014-7] [PMID] [PMCID]
2. Ayeni F.A., Falgenhauer J., Schmiedel J., Schwengers O., Chakraborty T., Falgenhauer L. (2020). Detection of blaCTX-M-27-encoding Escherichia coli ST206 in Nigerian poultry stocks. Journal of Antimicrobial Chemotherapy. 75: 3070-3072. [DOI: 10.1093/jac/dkaa293] [DOI:10.1093/jac/dkaa293] [PMID]
3. Castanheira M., Simner P.J., Bradford P.A. (2021). Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC-Antimicrobial Resistance. 3: dlab092. [DOI: 10.1093/jacamr/dlab092] [DOI:10.1093/jacamr/dlab092] [PMID] [PMCID]
4. Choi J.-K., Yoo J.-H. (2019). Increasing antimicrobial resistance of Escherichia coli makes antimicrobial stewardship more important. Journal of Korean Medical Science. 34: e236. [DOI: 10.3346/jkms.2019.34.e236] [DOI:10.3346/jkms.2019.34.e236] [PMID] [PMCID]
5. Clausen P.T.L.C., Aarestrup F.M., Lund O. (2018). Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics. 19: 307. [DOI: 10.1186/s12859-018-2336-6] [DOI:10.1186/s12859-018-2336-6] [PMID] [PMCID]
6. Clausen P.T.L.C., Zankari E., Aarestrup F.M., Lund O. (2016). Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data. Journal of Antimicrobial Chemotherapy. 71: 2484-2488. [DOI: 10.1093/ jac/dkw184] [DOI:10.1093/jac/dkw184] [PMID]
7. Dadgostar P. (2019). Antimicrobial resistance: implications and costs. Infection and Drug Resistance. 12: 3903-3910. [DOI: 10.2147/IDR.S234610] [DOI:10.2147/IDR.S234610] [PMID] [PMCID]
8. Edgar R., Bibi E. (1997). MdfA, an Escherichia coli multidrug resistance protein with an extraordinarily broad spectrum of drug recognition. Journal of Bacteriology. 179: 2274-2280. [DOI: 10.1128/jb.179.7.2274-2280.1997] [DOI:10.1128/jb.179.7.2274-2280.1997] [PMID] [PMCID]
9. Hinić V., Ziegler J., Straub C., Goldenberger D., Frei R. (2015). Extended-spectrum β-lactamase (ESBL) detection directly from urine samples with the rapid isothermal amplification-based eazyplex® SuperBug CRE assay: proof of concept. Journal of Microbiological Methods. 119: 203-205. [DOI: 10.1016/j.mimet.2015.10.015] [DOI:10.1016/j.mimet.2015.10.015] [PMID]
10. Hofer U. (2019). The cost of antimicrobial resistance. Nature Reviews Microbiology. 17: 3-3. [DOI: 10.1038/s41579-018-0125-x] [DOI:10.1038/s41579-018-0125-x] [PMID]
11. Jesumirhewe C., Springer B., Allerberger F., Ruppitsch W. (2020). Whole genome sequencing of extended spectrum β-lactamase genes in Enterobacteriaceae isolates from Nigeria. PLoS One. 15: e0231146 . [DOI: 10.1371/journal.pone.0231146] [DOI:10.1371/journal.pone.0231146] [PMID] [PMCID]
12. Magiorakos A.-P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., Paterson D.L., Rice L.B., et al. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection. 18: 268-281. [DOI: 10.1111/j. 1469-0691.2011.03570.x] [DOI:10.1111/j.1469-0691.2011.03570.x] [PMID]
13. Musa B.M., Imam H., Lendel A., Abdulkadir I., Gumi H.S., Aliyu M.H., Habib A.G. (2020). The burden of extended-spectrum β-lactamase-producing Enterobacteriaceae in Nigeria: a systematic review and meta-analysis. Transactions of the Royal Society of Tropical Medicine and Hygiene. 114: 241-248. [DOI: 10.1093/trstmh/trz125] [DOI:10.1093/trstmh/trz125] [PMID]
14. Nwaiwu, O. (2021). Output from KmerResistance data base 2.2 of acquired antimicrobial resistance genes from Nigerian E. coli genomes", Mendeley Data, V1. [DOI: 10.17632/jkjcmtzvps.1]
15. Nwaiwu O., Aduba C.C. (2020). An in silico analysis of acquired antimicrobial resistance genes in Aeromonas plasmids. AIMS Microbiology. 6:75-91. [DOI: 10.3934/microbiol.2020005]
16. Ojo O.E., Schwarz S., Michael G.B. (2016). Detection and characterization of extended-spectrum β-lactamase-producing Escherichia coli from chicken production chains in Nigeria. Veterinary Microbiology. 194: 62-68. [DOI: 10.1016/j.vetmic. 2016.04.022] [DOI:10.1016/j.vetmic.2016.04.022] [PMID]
17. Palma E., Tilocca B., Roncada P. (2020). Antimicrobial resistance in veterinary medicine: an overview. International Journal of Molecular Sciences. 21: 1914. [DOI: 10.3390/ijms21061914] [DOI:10.3390/ijms21061914] [PMID] [PMCID]
18. Partridge S.R., Kwong S.M., Firth N., Jensen S.O. (2018). Mobile genetic elements associated with antimicrobial resistance. Clinical Microbiology Reviews. 31: e00088-17. [DOI: 10.1128/CMR.00088-17] [DOI:10.1128/CMR.00088-17] [PMID] [PMCID]
19. Poirel L., Madec J.-Y., Lupo A., Schink A.-K., Kieffer N., Nordmann P., Schwarz S. (2018). Antimicrobial resistance in Escherichia coli. Microbiology Spectrum. 6. [DOI: 10.1128/ microbiolspec.ARBA-0026-2017] [DOI:10.1128/microbiolspec.ARBA-0026-2017] [PMID]
20. Tanko N., Bolaji R.O., Olayinka A.T., Olayinka B.O. (2020). A systematic review on the prevalence of extended-spectrum beta lactamase-producing Gram-negative bacteria in Nigeria. Journal of Global Antimicrobial Resistance. 22: 488-496. [DOI: 10.1016/j.jgar.2020.04.010] [DOI:10.1016/j.jgar.2020.04.010] [PMID]
21. Yeung A.W.K., Tzvetkov N.T., Gupta V.K., Gupta S.C., Orive G., Bonn G.K., Fiebich B., Bishayee A., Efferth T., Xiao J., Silva A.S., Russo G.L., et al. (2019). Current research in biotechnology: exploring the biotech forefront. Current Research in Biotechnology. 1: 34-40. [DOI: 10.1016/j.crbiot.2019.08.003] [DOI:10.1016/j.crbiot.2019.08.003]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb